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A fluid particle-in-cell (PIC) model is proposed for the numerical solution of the
continuity equation of electrons and ions in transient electrical gas discharges. The
reactions occurring in a gaseous discharge, such as ionization of neutral molecules,
electron attachment, and recombination between electrons and ions, are implemented
through the variation of the mass of the computational particles used in the simulation.
Two different forms of interpolation of the gain/loss rates from the grid to the com-
putational particles are suggested, depending on the reaction type. The PIC model
is first applied to the problem of an idealized electron avalanche in a non-attaching
gas. This problem possesses an analytical solution where the electron density grows
exponentially in time as it propagates, but keeps the square-wave form of the initial
electron distribution. This problem is used to validate the optimum interpolation of
the gain/loss rate and to analyze the effect of the mass matrix formulation of the
PIC model. Then, a more realistic model is applied to simulate the propagation of a
Trichel pulse between a sphere and a plate. In this case, the continuity equation for
electrons and positive and negative ions, coupled to the Poisson equation, has been
solved. This second test has proved the ability of the present numerical method to deal
with those discharges dominated by the space charge effect. The results of the PIC
simulation are compared with those obtained from the application of a flux-corrected
transport method. c© 2001 Academic Press
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1. INTRODUCTION

Electrical gas discharges are the result of many complex reactions that occur both in
the bulk of a gas and at electrodes. In the bulk, electrons are accelerated by the electric

1 This work has been supported by the Spanish DGICYT, under Contract PB96-1375.
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field and can ionize the surrounding region, thus producing positive ions. Also, electrons
can attach to neutral molecules to form negative ions, and electrons and negative ions can
recombine with positive ions to form again neutral molecules. At the electrodes, secondary
electrons can be released by the impact of ions and/or photons generated in the bulk. All
these reactions develop in very short times, typically a few hundreds of nanoseconds.

Many different numerical methods have been commonly applied to simulate the propa-
gation and time evolution of gaseous discharges, such as hybrid methods of characteristics
[1, 9, 25], flux-corrected transport (FCT) methods [11, 15, 20, 21], finite element (FE)
methods [26], and, more recently, mixed FE–FCT methods [12, 13]. Even though particle-
in-cell (PIC) methods are certainly leading methods in the area of plasma kinetic simulations
[5, 14], PIC fluid models have not been so commonly applied to the simulation of gaseous
discharges. However, some relevant works have recently appeared, particularly in the area
of stationary glow discharges [17].

PIC methods have the advantage of being numerically less diffusive than most of the
others numerical techniques. This fact guarantees the high accuracy of the simulation, both
in transient and in stationary problems [7, 8, 17]. Moreover, its extension to 2D and 3D poses
no additional problems. The major drawback of PIC methods is that they usually require
longer computational times than other methods, like FCT for example. Nevertheless, this
inconvenience is progressively losing strength as the power of computers increases steadily.
For example, the simulations described in this paper were all carried out using a personal
computer.

In this paper, a PIC method is formulated and applied to the numerical solution of the
continuity equation of charge carriers created by an electrical gas discharge. In particular,
this study is concerned with transient gas discharges where the space charge effects can
lead to strongly non-uniform electric fields and very steep density gradients, as occurs in
the development of Trichel pulses, the propagation of streamers, pulsed corona, etc.

The paper is organized as follows. In the first two sections, the PIC method is formulated,
the interpolation of the gain/loss rate from the grid to the computational particles is dis-
cussed, and the implementation of a second-order-in-time algorithm is explained. Then, the
particle-in-cell model is applied to two different problems. The first problem consists in an
idealized electron avalanche propagating in a non-attaching gas. The rate constants and the
velocity of electrons are given some specific functional forms that allow us to obtain a sim-
ple analytical solution. This problem is then used to validate the optimum interpolation of
the gain/loss rate and to analyze the effect of the mass matrix formulation of the PIC model.
The second problem, which is much more complex, is a realistic model of the propagation
of a Trichel pulse between a sphere and a plate. No analytical solution can be obtained in
this case and the results obtained from the PIC simulation will then be compared with those
obtained from a FCT method.

2. THE CONTINUITY EQUATION

The one-dimensional partial differential equation governing the mass density of a chem-
ical species in a gas discharge can be expressed as

∂ρ

∂t
+ ∂

∂x
(ρv) = S(x, t), (1)
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whereρ is the mass density,v is the velocity, andS is the gain/loss rate of the mass density.
This last term accounts for processes such as ionization, attachment, and recombination
that result in a variation of the mass density. For simplicity, diffusion has been ignored in
Eq. (1).

The mass density can be written as

ρ(x, t) = mN(x, t), (2)

wherem is the mass of the physical particles, which is constant, andN(x, t) is the number
density of particles, which usually changes by many orders of magnitude due to the physical
processes indicated before.

In PIC simulations, physical particles are simulated by means of computational parti-
cles.A common solution adopted in PIC simulations to account for chemical reactions is
to allow the mass of the computational particles to vary in time [17, 24]. To express this
approach through continuous equations, it is convenient to rewrite Eq. (2) as the product of
a density offictitious carriers,N (x, t), whose number is conserved, and the mass of these
carriers,µ(x, t), which changes continuously in time,

ρ(x, t) = µ(x, t)N (x, t). (3)

The density of these fictitious carriers will therefore satisfy a homogeneous continuity
equation

∂N
∂t
+ ∂

∂x
(N v) = 0, (4)

while the equation governing the mass of carriers can be obtained by substituting Eq. (3)
in (1),

dµ

dt
= S(x, t)/N , (5)

whered/dt represents the Lagrangian time derivative,d/dt = ∂/∂t + v∂/∂x.

3. THE PARTICLE-IN-CELL MODEL

In PIC simulations, the mass density and the particle density are represented by approx-
imated values on an array of grid points. The interaction between the different species is
also calculated on the grid points. In contrast, the transport of mass is simulated by means
of computational particles orsuperparticles. Superparticles can be regarded as finite-size
clouds of physical particles, their position being the center of mass of the clouds and their
velocities being the mean velocities of the clouds. The computational particles, labeled with
the subscriptp, will therefore be characterized with a massµp,a positionxp, and a velocity
vp.

The mass and momentum density at the grid pointxg can written as [3]

ρ(xg, t) = 1

H

∑
p

µpW(|xg − xp|), (6)

(ρv)(xg, t) = 1

H

∑
p

µpvpW(|xg − xp|), (7)
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whereH is set to the grid spacing andW is the assignment function shape, with∑
g

W(|xg − xp|) = 1. (8)

Similarly, the number density of carriers at the grid points and the associated first velocity
moment can be expressed as

N (xg, t) = 1

H

∑
p

W(|xg − xp|), (9)

(N v)(xg, t) = 1

H

∑
p

vpW(|xg − xp|). (10)

These approximate solutions satisfy the homogeneous continuity equation forN , Eq. (4),
since differentiating Eq. (9) with respect to time leads to

∂N
∂t
= 1

H

∑
p

dxp

dt
W′(|xg − xp|) = − ∂

∂x
(N v). (11)

However, in fluid PIC simulation of gas discharges, the velocity of species at the grid
points is entirely determined by the local electric field, which is in turn obtained from the
charge density values on the grid. Therefore, in order to guarantee the internal coherence
of the PIC model, the momentum density, as expressed by Eq. (7), is forced to satisfy

(ρv)(xg, t) = ρ(xg, t)v(xg, t). (12)

In general, particle velocities should not be determined from the direct interpolation of the
grid-defined values, since in that case Eq. (12) would not be satisfied.2 Instead, a modified
velocity,u(xg, t), is interpolated to the computational particles,

vp =
∑

g

u(xg, t)W(|xg − xp|). (13)

Substitution of this equation in (12) shows that this modified velocity can be obtained from
the solution of ∑

g′
C∗g,g′u(xg′ , t) = ρ(xg, t)v(xg, t), (14)

where

C∗g,g′ =
1

H

∑
p

µpW(|xg − xp|)W(|xg′ − xp|) (15)

is themass matrixassociated with the mass density.

2 Grid-defined values of the particle velocities can be directly interpolated when anearest grid point(NGP)
interpolation is chosen as the assignment scheme.
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The displacement of the computational particles can then be calculated by integrating its
equation of motion

dxp

dt
= vp. (16)

3.1. The Interpolation of the Gain/Loss Rate

In gas discharges, the terms appearing in the gain/loss rate may have many different
forms, depending on the type of reactions that participate in the discharge. However, for
every species, these terms can be roughly classified into one of these two categories:

• Gain/loss rate terms that are independent of the mass density of the species,S(x, t).
• Gain/loss rate terms that are proportional to the mass density of the species, that is,

S∗(x, t) = K (x, t)ρ(x, t).

In general, the proportionality constantK (x, t), or the complete gain/loss rate in the first
case,S(x, t), depends on the mass density of the other species and on the electric field, which
is obtained by solving Poisson’s equation. Examples of reactions whose gain/loss rates are
proportional to the mass density are, for the electrons, ionization, electron attachment to
neutral molecules, and recombination between electrons and positive ions. In contrast, for
positive and negative ions, ionization is an example of a reaction whose gain/loss rate is
independent of the mass density of ions.

In this section, two different forms of interpolation of the gain/loss rates from the grid to
the computational particles will be presented, according to the previous classification. The
first form of interpolation can be applied to both categories. Indeed, this form of interpolation
has also been applied in PIC models of chemically reacting fluid flows [24]. However, as
will be shown below, the application of this type of interpolation to those gain/loss rates
pertaining to the second category will always result in solutions with a worse accuracy. Since
the evolution of transient gas discharges is governed by electron density, and the gain/loss
rate of the electron density is proportional to itself, it is important to use the second form
of interpolation whenever it applies.

3.1.1. Gain/loss rate terms independent of the mass density.As has been said previously,
the mass of computational particles is not constant, but changes in time. The rate of variation
of the mass of every computational particle is interpolated from the grid points using the
same assignment function shape,

dµp

dt
=
∑

g

s(xg, t)W(|xg − xp|). (17)

According to Eq. (5),

s(xg, t) = S(xg, t)

N (xg, t)
(18)

would seem to be the proper choice. However, substitution of Eqs. (6) and (7) in Eq. (1)
shows that the rate of variation of the mass of computational particles should satisfy

1

H

∑
p

dµp

dt
W(|xg − xp|) = S(xg, t). (19)
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Taking into account (17), the above equation can be written as∑
g′

Cg,g′s(xg′ , t) = S(xg, t), (20)

where

Cg,g′ = 1

H

∑
p

W(|xg − xp|)W(|xg′ − xp|) (21)

is the analogous to themass matrix. However, this mass matrix is not associated with the
mass density but with the number density of computational particles. The rate of mass
variation at the grid points,s(xg, t), should then be obtained by solving the system of
linear equations (20). When the mass matrix formulation is not used ands(xg, t) is taken
as expressed by Eq. (18), numerical diffusion of the gain/loss rate will appear between
adjacent grid points.3

The mass matrix formulation must be used with care in the presence of a discontinuity
that extends over very few cells. In such cases, the evaluation of the mass matrix across the
discontinuity leads to unphysical oscillations of the interpolated quantity [6].

3.1.2. Gain/loss rate terms proportional to the mass density.In these cases, the rate
of variation of the mass of carriers is also proportional to the mass of carriers itself, since
according to Eq. (5),

dµ

dt
= S∗(xg, t)

N (xg, t)
= K (x, t)ρ(x, t)

N (x, t) = K (x, t)µ. (22)

Therefore, when interpolating grid-defined values to the computational particle, only the
proportionality constantK (x, t) should be interpolated. The rate of variation of the mass
of a computational particle can then be written as

dµp

dt
= µp

∑
g

k(xg, t)W(|xg − xp|), (23)

wherek(xg, t) may differ from K (xg, t) to satisfy Eq. (19). Substitution of (23) in (19)
gives ∑

g′
C∗g,g′k(xg′ , t) = S∗(xg, t) = K (xg, t)ρ(xg, t), (24)

whereC∗g,g′ is the mass matrix of the PIC formulation. Therefore, as in the previous case,
the value ofk(xg, t) that is interpolated from the grid to the particles should be obtained
from the solution of a system of linear equations.

Clearly, the mass matrix formulation would not be required in those cases whereK (x, t)
is independent of the spatial coordinate, since∑

g′
C∗g,g′K (t) = K (t)

1

H

∑
p

µpW(|xg − xp|)
∑

g′
W(|xg′ − xp|) = K (t)ρ(x, t). (25)

3 As in the case of velocity, Eq. (18) can be used with no numerical diffusion when a NGP interpolation is
chosen for the assignment scheme.
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In contrast, using the first type of interpolation, a constant value ofK does not suffice to
satisfy Eq. (20) since it is also required thatρ(x, t)/N (x, t) be independent ofx. This is
verified when the mass of all computational particles is identical, which is hardly found in
PIC simulations of gas discharges.

There are several reasons why this type of interpolation should always be preferred.
The first one is that the interpolated function,K (x, t), will always be smoother than
K (x, t)ρ(x, t)/N (x, t). This is so because the gain/loss rate is proportional to the mass
density and, in gas discharges, the mass density is expected to vary exponentially in time
with K . In the second place, this type of interpolation will never assign mass to those
computational particles with zero initial mass. This property is consistent with the fact that
these zero mass particles do not contribute to the grid values of the gain/loss rate. As a
result, numerical diffusion of mass is prevented at propagating fronts, which are usually
present in transient gas discharges. Finally, with this interpolation, the mass of particles
is guaranteed to remain always positive, since it isd(ln µp)/dt, and notdµp/dt, that has
to be integrated in Eq. (23). The assignment of negative mass to computational particles
usually has disastrous consequences in PIC simulations.

All these advantages together result in very accurate solutions, so that the mass matrix for-
mulation is often not required. In constrast, when the other scheme of interpolation is used,
the simulation will commonly produce worse results, unless the mass matrix formulation
is included in the algorithm.

This type of interpolation can also be extended to those gain/loss rates that are pro-
portional to an integer power of the density,S∗ = K (x, t)ρ(x, t)n. In such cases, only
K (x, t)ρ(x, t)n−1 should be interpolated from the grid to the computational particles.

3.2. The Computational Algorithm

In contrast with Ref. [17], the time integration scheme used in this paper is not implicit,
that is, the continuity equation is successively integrated in time. Fully implicit plasma fluid
codes are particularly efficient for calculating steady-state solutions, since implicit differ-
encing eliminates stability constraints on the time step. In the work of Lapentaet al. [17],
a PIC simulation of a DC glow discharge is performed. In this kind of electrical discharge,
the solution is usually sought at the stationary state and therefore an implicit method of
integration is certainly a right choice. Explicit methods have the advantage of being simpler
and having a lower computational cost per time step, although the length of the time step
is limited. Since our PIC formulation deals primarily with transient gas discharges that
develop in very short times (tens of nanoseconds), an explicit method of integration that is
second-order accurate in time (second-order Runge–Kutta method) has been preferred. A
listing of the computational steps in a computational cycle follows:

1. The mass of computational particles is interpolated to the grid to obtain the mass
densities of species (Eq. (6)) and the net electrical charge.

2. The electric field at the grid point is then determined by solving Poisson’s equation.
3. The gain/loss rates,S(xg, t) andS∗(xg, t), and the velocities of species,v(xg, t), are

evaluated at the grid points. Then the mass matrices,C∗g,g′ andCg,g′ , are computed (Eqs. (15)
and (21)) and the systems of equations (14), (20), and (24) is solved.

4. The grid values ofu(xg, t), s(xg, t), andk(xg, t) are interpolated back to the particles
to obtainvp = dxp/dt anddµp/dt.
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5. Time is advanced by a half step,1
21t , and the particles’ positions are updated to

xp + 1
2vp1t . Then steps 1 to 4 are repeated, and the particles’ velocities and the rate of

mass variation of particles are evaluated at this intermediate step.
6. Finally, the particles’ positions and the mass of particles are updated at a complete

time step,1t , using a second-order Runge–Kutta approximation,

xp(t +1t) = xp(t)+1t
dxp

dt

∣∣∣∣
(t+ 1

21t,xp+ 1
2vp1t)

, (26)

µp(t +1t) = µp(t) 1t
dµp

dt

∣∣∣∣
(t+ 1

21t,xp+ 1
2vp1t)

. (27)

7. The computational cycle is restarted att +1t .

The same computational steps will be present if a higher order of integration in time is used,
the only difference being that a greater number of intermediate steps will be required.

4. IDEALIZED ELECTRON AVALANCHE

This test problem is based on the continuity equations that govern a one-dimensional
electron pulse propagating in a nonuniform electric field. As the electron pulse advances
from the cathode to the anode, more electrons and positive ions are generated due to the ion-
ization of the neutral molecules. The gas filling the space between the electrodes is assumed
to be a non-attaching gas, so that no negative ions are generated during the development of
the discharge. The continuity equations corresponding to this problem can be written as

∂ρe

∂t
+ ∂

∂x
(ρeve) = S∗e(x, t), (28)

∂ρ+
∂t
= S+(x, t), (29)

whereρe andρ+ are the mass densities of electrons and positive ions. The velocity of
positive ions is set to zero, since it is several orders of magnitude smaller than the velocity
of electrons,ve. The gain/loss rates of mass density for electrons and positive ions are
identical and proportional to the electrons’ mass density,

S∗e(x, t) = S+(x, t) = K (x)ρe(x, t).

For simplicity, the effect of the space charge on the electric field has been ignored. Therefore,
both the velocity of electrons and the rate constant,K , are assumed to be known functions
of the spatial coordinate. Finally, diffusion of electrons and ions has also been ignored.

A simple analytical solution of Eqs. (28) and (29) can be obtained for the case when the
electron velocity and the rate constant are related as

K (x) = c+ dve

dx
, (30)

wherec is a constant. In such a case, the continuity equation for electrons can be transformed
into

dρe

dt
= ∂ρe

∂t
+ ve

∂ρe

∂x
= cρe(x, t), (31)
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whose solution can be expressed as

ρe(x, t) = ρe(x0, 0) exp(ct), (32)

andx0 is the starting position of an electron that arrives at the coordinatex after traveling
a timet .

Once the mass density of electrons has been determined, the positive ion distribution can
be easily obtained after performing a time integration of Eq. (29),

ρ+(x, t) = K (x)
∫ t

0
ρe(x0, 0) exp(ct) dt. (33)

Setting the initial condition for electrons and ions to

ρe(x, 0) =
{

1, for xa < x < xb,

0, otherwise,
ρ+(x, 0) = 0, for all x. (34)

the analytical solution for the mass densities can be expressed as

ρe(x, t) =
{

exp(ct), for 1(xb, x) < t < 1(xa, x),

0, otherwise.
(35)

ρ+(x, t) =
K (x)

exp(ctmin)− exp(ctmax)

c
, for t > 1(xb, x),

0, otherwise,
(36)

where1(x′, x) is the time taken for an electron to travel fromx′ to x; that is,

1(x′, x) =
∫ x

x′

dx

ve(x)
, (37)

andtmin = min[t,1(xa, x)], andtmax= max[0,1(xb, x)].

4.1. The PIC Simulation

This test simulation has been primarily designed to make evident the effects of (a) using
or not using the mass matrix formulation when interpolating the velocity of the species,
(b) using or not using the mass matrix formulation when interpolating the gain/loss rates
of the mass densities, and (c) using or not using the recommended type of interpolation for
the gain/loss rates of the mass densities.

For the velocity, not using the mass matrix formulation means that the particle-interpolated
grid velocity is directly the grid-defined velocity, that is,u(xg, t) = v(xg, t). For the gain/loss
rates, it means that eithers(xg, t) = S(xg, t)/N (xg, t) or k(xg) = K (xg) is interpolated to
the computational particles, depending on the choice made in (c).

The particle-in-cell simulation of this test has been run on a uniform grid with 101 nodes
using acloud-in-cell(CIC) assignment scheme. The initial pulse of electrons extends from
xa = 0 to xb = 40, and, for convenience, the constantc has been taken asc = ln10 and the
velocity of electrons as

ve(x) = p+ q cos(ax), (38)
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with p = 7,q = 4 anda = 3π/20. The computations are initiated with 400 “superelec-
trons,” that is, computational particles associated with the physical electrons. This number
corresponds to an averaged density of 10 superelectrons per cell. The PIC simulation has
been followed up to 10 units of time, and density profiles at the instantt = 1andt = 10 are
presented in Fig. 1 for the electrons and in Fig. 2 for the ions. In these figures, the exact

FIG. 1. Electron mass density at timest = 1 (left) andt = 10 (right) for an idealized electron avalanche.
Thick solid line: exact solution; circles: PIC simulation. The PIC simulation has been carried out in different
forms, as described by the three characters of the upper-left label. First character: the mass matrix formulation has
been applied (T) or not applied (F) to the interpolation of velocity. Second character: the mass matrix formulation
has been applied (T) or not applied (F) to the interpolation of the gain/loss rate. Third character: the proportionality
of the gain/loss rate to density is exploited (T) or ignored (F).
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FIG. 1—Continued

solution is marked by a thick solid line, while the numerical simulation is represented with
circles connected by a thin line. In each graph, the curves on the left (right) correspond to
t = 1 (t = 10) and the density values must be read using the vertical axis on the left-hand
side (right-hand side) of the graph. For the electrons (Fig. 1), the three-character label that
has been inserted in the upper-left corner of the graphs indicates the options selected in the
simulation. Each character may be either T (true) or F (false) and order of the characters is
in correspondence with items (a), (b), and (c) listed at the beginning of this section. Hence,
the label TFT in Fig. 1f means that the PIC simulation has been performed using the mass
matrix formulation for the velocity but not for the gain/loss rate of mass density and that
the interpolation of the gain/loss rate has been made as described in Section 3.1.2.
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FIG. 1—Continued

According to the exact solution, the electron density will grow exponentially in time,
increasing one order of magnitude for every unit of time, but keeping the initial rectangular
distribution while propagating. Moreover, since the velocity of the pulse is identical at the
limits xa andxb, the width of the pulse should be the same at all times.

Let us now compare the results of different PIC simulations among themselves and with
the analytical solution. Figure 1a shows the electron density distribution for the case when
the matrix formulation is not used and the interpolation of the gain/loss rate is performed
without exploiting its proportionality with the mass density (Section 3.1.1). Clearly, the
temporal evolution of the electron density is poorly reproduced: As soon as the simulation
starts, the electron density exhibits a number of oscillations whose amplitudes increase with
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FIG. 1—Continued

time. These oscillations are practically in phase with the ratioK (x)/ve(x). This is because
K (x)ρ(x)/N (x) is the rate of mass variation that is interpolated to the particles, andN (x)
andve(x) are phase-alike.

The results of this simulation are not essentially modified when the mass matrix for-
mulation is applied to the electron velocity (Fig. 1b), but they do change when the mass
matrix formulation is applied to the interpolation of the gain/loss rate (Fig. 1c). This fact
shows that the interpolation errors affecting the gain/loss rate are much more important
that those affecting the velocity. This is in turn a direct consequence of interpolating the
gain/loss rate without taking advantage of its proportionality to the mass density. In this
case, the rate of mass variation interpolated to the particles is proportional to the mass
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FIG. 2. Positive ion mass density at timest = 1 (left) andt = 10 (right) for the simulation of an idealized
electron avalanche presented in Fig. 1e. Thick solid line: exact solution; circles: PIC simulation. (a) The mass
matrix formulation has not been applied. (b) The mass matrix formulation has been applied.

density itself, which increases exponentially in time. Therefore, the interpolated quantity
will be affected by large errors as time elapses. When the mass matrix formulation is used
(Fig. 1c), interpolation errors of the gain/loss rate are suppressed and the results are more
accurate. However, the application of the mass matrix formulation has an undesirable side
effect: spurious oscillations appear at the limits of the electrons pulse, where the electron
density is discontinuous. As has been mentioned earlier, these unphysical oscillations are
commonly found when the mass matrix formulation is applied across a discontinuity that
extends over very few cells [6].
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Finally, when the mass matrix formulation is applied to both the velocity and the gain/loss
rate interpolation (Fig. 1d), the numerical simulation is improved and matches the analyt-
ical solution more closely, except at the limits of the electron pulse, where the spurious
oscillations become larger.

When the interpolation of the gain/loss rate is performed by taking advantage of its pro-
portionality with the mass density (Section 3.1.2), the agreement between the PIC simulation
and the exact solution is complete, even though the mass matrix formulation is not applied
to the velocity and to the gain/loss rate interpolation (Fig. 1e). This result clearly shows that
the interpolation of the gain/loss rate is now being performed much more accurately than
in the previous cases.

Adding the mass matrix formulation to the velocity interpolation (Fig. 1f ) or to the
gain/loss rate interpolation (Fig. 1g) produces a worsening of the PIC simulation. The
deterioration of the simulations is due to the loss of consistency between the forms in
which K (x) andve(x) are interpolated from the grid to the particles, since there exists a
close relation between the rate constant and the electron velocity (Eq. (30)). Moreover, the
application of the mass matrix formulation gives rise to spurious oscillations at the edges
of the square pulse, as has been previously observed.

However, when the mass matrix formulation is applied to both the interpolation of the
velocity and the gain/loss rate (Fig. 1h), the internal consistency is recovered and the PIC
simulation resembles more closely the exact solution, but unphysical oscillations persist at
the limits of the square pulse, thus making this PIC simulation unacceptable.

There is a significant coincidence between the PIC simulations shown in Figs. 1c and
1g and Figs. 1d and 1h, respectively, even though they are all unsatisfactory. The only
difference between these simulations is the type of interpolation used for the gain/loss rate,
either without exploiting of its proportionality with the mass density (Figs. 1c and 1d) or
by taking advantage of this proportionality (Figs. 1g and 1h). This agreement indicates that
the choice of interpolation for the gain/loss rate is of secondary importance when the mass-
matrix formulation is applied to the gain/loss rate, since interpolation errors of the gain/loss
rate have been suppressed by the use of that formulation. However, the interpolation of the
gain/loss rate without exploitation of its proportionality to density is not a valid option in
simulations of gas discharges, since the application of the mass matrix formulation will
always be required, and this will introduce necessarily spurious unphysical oscillations at
the discontinuities. The presence of discontinuities and sharp gradients is not exceptional,
but rather the rule, in real gas discharge problems.

In conclusion, the optimal PIC simulation is the one obtained by using the interpolation
that exploits the proportionality to mass density of the gain/loss rate, and not applying
the mass matrix formulation to the velocity and gain/loss rate (Fig. 1e), in order to avoid
the unphysical oscillations associated with the presence of discontinuities. Only if we are
certain that the grid resolution is high enough to resolve the density gradients, the mass
matrix formulation for velocity and gain/loss rate may be added if an even more accurate
solution is necessary.

Regarding the mass density of positive ions, the exact solution predicts an exponential
growth in time modulated by the rate constant, which has a periodic character due to its
relation with the electron velocity (Eq. (30)). In contrast to the case of electrons, the gain/loss
rate for the mass of ions is independent of the mass density of ions. Therefore, in the PIC
simulation, the rate of variation of the mass of the superions has to be evaluated as described
in Section 3.1.1.
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Figure 2 shows the results of the PIC simulation for the positive ions associated with the
electron density shown in Fig. 1e. The mass matrix formulation for the interpolation of the
gain/loss rate of ions has not been applied to the PIC simulation presented in Fig. 2a, but it
has been applied to the simulation corresponding to Fig. 2b. There is fair agreement between
the numerical results and the exact solutions in both simulations, although the simulation
corresponding to Fig. 2b follows more closely the exact solution. The negligible effect of
using the mass matrix formulation can be understood by looking carefully at the interpolated
quantity,S+(x, t)/N+ = K (x)ρe(x, t)/N+. Since the positive ion velocity has been set to
zero, the computational particle density is constant in time (10 particles per cell). Moreover,
the electron mass density is constant as well, as shown in Fig. 1e. Therefore, only the rate
constantK (x) is subjected to the mass matrix correction. This situation is somewhat similar
to the case where the gain/loss rate of electrons was interpolated by taking advantage of its
proportionality with the mass density. And, as in that case, the corrections introduced by
the mass matrix formulation are negligible (cf. Figs. 1e and 1h).

Finally, Fig. 3 shows the superelectron density,Ne, corresponding to the case presented
in Fig. 1e. Care must be taken not to confuseNe with the number density of electrons,
which is proportional to the electron mass density. Instead,Ne is a density of computational
particles. As in the previous graphs, the curve on the left (right) corresponds to the time
t = 1 (t = 10). The strong oscillations exhibited by the density of superelectrons are asso-
ciated with the spatial dependence of the electron velocity. At the minima, the density of
computational particles can be as low as three superelectrons per cell. However, since the
mass of every superelectron is different, a constant electron density distribution may be ac-
curately represented by a strongly oscillating superelectron density. The weak fluctuations
that can be noticed in the electron density (see Fig. 1e) are associated with these minima of
the superelectron density.

FIG. 3. Superelectron density at timest = 1 (left) andt = 10 (right) for the simulation of an idealized electron
avalanche presented in Fig. 1e.
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5. DEVELOPMENT OF A TRICHEL PULSE

The problem of a Trichel pulse propagating in low-pressure oxygen (50 Torr) has been
investigated by Morrow [21] using an explicit flux-corrected transport (FCT) algorithm and
other techniques described by Morrow and Cram [23]. Here, this problem will be used to
check the suitability of the PIC model to simulate real gas discharges.

The Trichel pulse is assumed to develop between a sphere of radiusR= 5 mm and an
infinite plane at a distanced = 20 mm apart. The sphere is subjected to a high negative volt-
age,V = −2900 V, while the plane is grounded. The discharge is modeled as a cylindrical
channel of radius 4 mm with a uniform radial distribution and a variable axial distribution
of charge.

The one-dimensional continuity equations along the axis of symmetry,x, can be written as

∂Ne

∂t
+ ∂

∂x
(Neve) = α|ve|Ne− η|ve|Ne− βN+Ne, (39)

∂N+
∂t
+ ∂

∂x
(v+N+) = α|ve|Ne− βNeN+ − βN−N+, (40)

∂N−
∂t
+ ∂

∂x
(v−N−) = η|ve|Ne− βN+N−, (41)

whereN is the number density,α, β, andη are the ionization, recombination, and attachment
coefficients, and the subscriptse, +, and− refer to electrons, positive ions, and negative
ions respectively. Similarly to the previous simulation, electron diffusion has been omitted
in Eq. (39). The reader is referred to the work of Morrow [21] for a detailed description of
the transport coefficients used in the simulation.

Most of the transport coefficients depend on the electric field. The electric field along the
x-axis is obtained as the superposition of the Laplacian electric field, and the space-charge
field due to the discharge channel. The Laplacian electric field is obtained by the well-
known method of images. The space-charge electric field, with homogeneous boundary
conditions at the electrodes, is obtained by the method of disks. Basically, the method of
disks assumes that the discharge channel may by discretized in a number of thin disks with
uniform charge density. The contribution of disks to the space-charge electric field is then
obtained by images as well.

The boundary conditions for the electrons and ions are

N−(0, t) = 0, (42)

N+(d, t) = 0, (43)

Ne(0, t) = N p
e + Ni

e, (44)

whereN p
e and Ni

e are the numbers of secondary electrons released at the cathode by the
impacts of photons and ions, respectively. Denoting byγp andγi the efficiency factors of
these processes, the number of secondary electrons can be written as

N p
e (0, t) =

γp

|ve(0, t)|φ(0, t), (45)

Ni
e(0, t) =

γi

|ve(0, t)|N+(0, t)|v+(0, t)|, (46)

whereφ is the number of photons hitting a unit surface of the cathode in a unit time [21].



64 SORIA, PONTIGA, AND CASTELLANOS

5.1. The PIC Simulation

In this section, we explain different aspects of the numerical implementation of this PIC
simulation. The assignment scheme and its influence on the stability of the simulation is
first discussed. Then, some details regarding the computational grid used in the simulation
are given. Finally, the interpolation of the gain/loss rate terms of Eqs. (39)–(41) from the
grid to the particles and the implementation of the physical boundaries are described.

5.1.1. The assignment scheme.In the test model simulation presented in Section 3,
the electric field at the grid points and, therefore, the particle velocity were prescribed
externally through Eq. (38). In the simulation of the Trichel pulse, in contrast, the electric
field at the grid points is obtained from the grid-defined values of the particle densities. The
method of disks is numerically implemented by means of an influence matrix operator [22],
whose product with the grid-defined charge density gives the space charge-field. Once the
total electric field (Laplacian plus space-charge electric field) is determined, the particle
velocities are obtained from constitutive relations based on experimental data.

This difference has important consequences on the assignment scheme that may be used
in the PIC simulation. In the test model, both the velocity of computational particles and the
gain/loss rates were interpolated from the grid to particles using a CIC assignment scheme.
This type of PIC simulation is classified as “momentum-conserving” [14]. However, this
assignment scheme is unstable when it is applied to the numerical simulation of the Trichel
pulse. The instability cannot be eliminated by shortening the time step or increasing the
number of grid points and/or the number of computational particles. At best, these resorts can
only delay the onset of the instability by a few nanoseconds. An example of this instability
is presented in Fig. 4 (cf. Fig. 8d) for the electron density att = 60 ns.

In contrast, the PIC simulation becomes stable when an “energy-conserving” scheme
is used instead. In this assignment scheme, the electric field is evaluated directly at the

FIG. 4. Numerical instability of the PIC simulation of a Trichel pulse when a momentum-conserving scheme
is used. The electron density att = 60 ns is shown in the figure.
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pointsxg+1/2, lying midway between the grid pointsxg andxg+1. Then, the velocities of
all computational particles inside the interval [xg, xg+1] are given an identical value: the
particle velocity corresponding to the electric field atxg+1/2. Clearly, this particle velocity
interpolation is equivalent to anearest grid point(NGP) interpolation from a grid whose grid
points are located at the cell boundaries of the original grid. In contrast, the interpolation
of the gain/loss rates from the grid to the superparticles and the interpolation of the mass
of computational particles to the grid will still be performed according to the standard CIC
interpolation. The resulting scheme is therefore a mixed CIC/NGP assignment scheme.

In the Appendix, the stability of momentum- and energy-conserving schemes for a prob-
lem simpler than but closely related to the Trichel pulse problem is analyzed.

5.1.2. The computational grid.The PIC simulation has been run on a nonuniform
grid with 181 nodes identical to the one described by Morrow [21]. The grid has a very
fine resolution in the region where the electric field is very weak, 3× 10−4 ≤ x ≤ 4.5×
10−4 m, and becomes coarser as it approaches the cathode and the anode. For computational
efficiency, the physical grid is mapped into a natural grid [4], where the separation between
nodes is unity,

xg = g, g = 0, . . . ,180.

5.1.3. The simulation in the bulk.Since Eqs. (39)–(41) are written in terms of the num-
ber density instead of the mass density, the computational particles in the PIC simulation
will not be characterized by its mass,µp, but by the number of physical particles, ¯µp,
associated with the computational particle. Both quantities are related as

µ̄p = µp

m
,

wheremis the mass of the physical particle. Of course, the PIC model described in Section 3
is equally valid in the present case, provided thatµp is replaced by ¯µp everywhere.

The gain/loss rate of the number density of electrons (see Eq. (39)) is proportional to the
number density of electrons itself. Therefore, the rate of variation of ¯µp for superelectrons,
µ̄e

p, should be evaluated according to the procedure described in Section 3.1.2,

dµ̄e
p

dt
= µ̄e

p

∑
g

s∗e(xg, t)W
(∣∣xg − xe

p

∣∣), (47)

wherexe
p is the position of the superelectron ands∗e is obtained by solving the following

system of linear equation:∑
g′

Ce,∗
g,g′s

∗
e(xg′ , t) = [α|ve|Ne− η|ve|Ne− βN+Ne]xg,t . (48)

If the mass matrix formulation is not used, thens∗e is set to

s∗e(xg, t) = [α|ve| − η|ve| − βN+]xg,t .

For positive and negative ions, however, the gain/loss rates contain terms that are propor-
tional and non-proportional to the respective number densities of ions (see Eqs. (40) and
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(41)). In these cases, the rate of variation of ¯µp will have two distinct contributions that
should be evaluated separately. For the positive ions, for example, we have

dµ̄+p
dt
=
∑

g

s+(xg, t)W(|xg − x+p |)+ µ̄+p
∑

g

s∗+(xg, t)W(|xg − x+p |), (49)

wherex+p is now the position of the supercation ands+ ands∗+ are obtained by solving the
following systems of linear equations:∑

g′
C+g,g′ s+(xg′ , t) = [α|ve|Ne]xg,t , (50)

∑
g′

C+,∗g,g′ s
∗
+(xg′ , t) = [−βNeN+ − βN−N+]xg,t . (51)

If the mass matrix formulation is not used,s+ ands∗+ are given the following values:

s+(xg, t) = [α|ve|Ne/N+]xg,t , (52)

s∗+(xg, t) = [−β(Ne+ N−)]xg,t . (53)

A set of similar equations can be also written for the negative ions.
The mobility of electrons is several orders of magnitude greater than the mobility of ions.

Moreover, the drift of electrons and positive ions occurs in opposite directions. These
two facts must be taken into account to avoid the situation where the superelectrons,
as they drift to the anode, enter a cell completely void of supercations and/or superan-
ions. If that happens, the gain/loss rate of the ion densities at the grid point cannot be
returned to the computational particles, since they will be absent in the cell. Therefore, as
the electron head moves towards the anode, new superions with initial values ¯µ+p = 0 and
µ̄−p = 0, have to be created. In the present simulation, superions are checked to exist as
far as one cell ahead from the most advanced superelectron. In their absence, new superi-
ons are introduced to fill the void region with a density of 15 computational particles per
cell.

5.1.4. Boundary–particle interaction.Physical boundaries are located at the cathode
and at the anode, to which correspond the grid pointsx0 and x180, respectively. These
physical boundaries may interact with the computational particles in three different forms,
depending on the type of particles we are considering. Basically, the electrodes may behave
asabsorbing, repelling, and/orinjectingboundaries.

Absorbing boundaries are the cathode for the positive ions and the anode for the negative
ions and the electrons. This type of boundary is implemented by using two additional
grid points beyond the original grid:x−1 = −1 andx181= 181. Computational particles
are not removed from the simulation until they cross these extended limits. Meanwhile,
the super-cations located between the grid pointsx−1 and x0 will still contribute to the
positive ion density at the cathode and, correspondingly, the superanions and superelectrons
betweenx180 andx181 will contribute to the negative ion density and electron density at the
anode respectively. Since superparticles are absorbed progressively, there will not be sudden
jumps in charge density that may cause unwanted fluctuations in the particle density. The
velocity of these computational particles is evaluated from the electric field at the midpoints
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x−1+1/2 andx180+1/2, which is linearly extrapolated from the two nearest midpoints in the
grid.

Repelling boundaries are the cathode for the negative ions and the anode for the positive
ions. This kind of boundary–particle interaction corresponds to the boundary conditions
(42)–(43) and is implemented by excluding super-anions and super-cations from the grid
intervals [x0, x1) and(x179, x180], respectively. Since the drift direction of negative ions is
toward the anode, care must be taken to avoid a situation where the first grid cells become
empty of superanions. This is accomplished by introducing new computational particles of
this type, with a density of 15 particles per cell, in the void region to the right of the grid
point x1 . Similarly to the process of particle creation in the bulk, these new computational
particles are created with ¯µ−p = 0. At the anode, similar care must be taken with positive
ions and, when necessary, new supercations should be introduced in the void region to the
left of the grid pointx179 .

Finally, the cathode also behaves as an injecting boundary for electrons, as expressed by
the boundary condition (44). Taking into account Eqs. (45) and (46), this boundary condition
fixes the rate at which secondary electrons are being introduced into the system from the
cathode, that is,|ve(0, t)|Ne(0, t). Therefore, this boundary condition is implemented as a
gain/loss rate for the number density of electrons at the first grid point. The rate of variation
of µ̄e

p in the interval [x−1, x1) is obtained as

dµ̄e
p

dt
= s′e(x0, t)W

(∣∣x0− xe
p

∣∣)+ µ̄e
ps∗e(x1, t)W

(∣∣x1− xe
p

∣∣), (54)

wheres′e(x0, t) is the gain/loss rate associated with the boundary condition at the cathode,

s′e(x0, t) =
[ |ve|Ne/(H/2)

Ne

]
x0,t

, (55)

ands∗e(x1, t) is the gain/loss rate due to the chemical reactions occurring in the first grid
point in the bulk.

5.2. Numerical Results

In this section, the results of the PIC simulation will be analyzed and compared with
those obtained using a FCT method. The FCT algorithm implemented here is basically
identical to the one used by Morrow [21], that is, the Phoenical “low-phase error” Shasta
algorithm of Boris and Book [2] complemented with Zalesak’s peak preserver [27]. The time
integration in both simulations has been performed by a second-order Runge–Kutta method
with variable time step. The time step is adjusted to satisfy that1t < 1tmax= H/2vmax,
wherevmax is the maximum value of the velocity at the grid points. This is in essence the
Courant–Friedicks–Lewis condition for the stability of the numerical scheme. Both in the
FCT and in the PIC simulation, the maximum size of the time step has been limited to
0.751tmax.

The PIC simulation starts at timet = 0 with the release of 400 seed electrons near the
cathode. These seed electrons are represented by 309 computational particules (super-
electrons) distributed along the first 21 cells. The electron density profile corresponding
to these computational particles is a narrow Gaussian distribution with peak density of
1.52× 1011m−3 whose center is at a distancex = 55µm apart from the cathode. The



68 SORIA, PONTIGA, AND CASTELLANOS

FIG. 5. Electron density in the early stages of the Trichel pulse simulation(t = 1 ns). The PIC simulation has
been carried out in different forms, as described by the two characters in the upper-left label. First character: the
mass matrix formulation has been applied (T) or not applied (F) to the interpolation of the gain/loss rate. Second
character: the proportionality with density of the gain/loss rate is exploited (T) or ignored (F).

simulation has been followed during the first 213 ns, since this interval is long enough to
observe the four different phases of the Trichel pulse defined by Morrow.

Let us first discuss the effect of applying or not applying the mass matrix formulation
and exploiting or ignoring the proportionality to density of some of the terms appearing
in the gain/loss rates. As before, a label of two characters will be used inside the plots to
discern among the different PIC simulations. The first character of the label refers to the
application of the mass matrix formulation (T: true, F: false) while the second indicates if
the simulation has taken advantage of the proportionality to density of some of the terms
of the gain/loss rates (T: true, F: false).

Figure 5 shows the electron density att = 1 ns, after the PIC simulation has been run
for 241 temporal steps. At this early stage, the initial electron distribution has drifted
375µm towards the cathode and has already experienced some amplification. Compar-
ing the four different simulations, we observe that, as in the model test of the electron
avalanche, the mass matrix formulation has very little influence when the proportionality of
the gain/loss rate to the mass density is used (FT and TT). In contrast, when this proportion-
ality is ignored, the mass matrix correction is necessary in order to obtain an accurate solu-
tion (TF).

Since electrons are drifting in a highly non-uniform decreasing electric field, the elec-
tron distribution tends to collapse in to a delta function. Therefore, sooner or later, all the
computational particles will be spread along a distance shorter than the width of a sin-
gle cell. At that moment, the initial Gaussian distribution will only be defined by two or
three grid points, depending on whether the packet of particles is exactly bounded by two
grid points or is placed inside a cell. This configuration can be observed in Fig. 6a, corre-
sponding tot = 10 ns. The agreement and the differences among the four PIC simulations
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FIG. 6. Electron density in the early stages of the Trichel pulse simulation(t = 10 ns). (a) Detailed view
of the electron avalanche head. (b) Detailed view of the secondary electrons released at the cathode. The PIC
simulation has been carried out in different forms, as described by the two characters in the upper-left la-
bel. First character: the mass matrix formulation has been applied (T) or not applied (F) to the interpolation
of the gain/loss rate. Second character: the proportionality of the gain/loss rate to density is exploited (T) or
ignored (F).

are practically unchanged with respect to the earlier timet = 1 ns. However, a new as-
pect of the simulation now appears: the use of the mass matrix formulation when the
gain/loss rate has been interpolated without exploiting its proportionality with density (TF)
has introduced a spurious fluctuation behind the electron pulse. At later times, this fluc-
tuation may appear either behind, ahead of, or both behind and ahead of the electron
pulse.
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FIG. 7. Electron density distribution in the Trichel pulse att = 43 ns. The PIC simulation has been carried
out in different forms, as described by the two characters in the upper-left label. First character: the mass matrix
formulation has been applied (T) or not applied (F) to the interpolation of the gain/loss rate. Second character: the
proportionality with density of the gain/loss rate is exploited (T) or ignored (F).

At this stage of the simulation, secondary electrons at the cathode are mainly released
by the impact of the photons generated by ionization in the bulk. The number of impacts
is proportional to the rate of ionization in the bulk and therefore depends on the electric
field strength. The existence of a fluctuation behind the electron pulse, where the particle
density becomes “negative” and the electric field is stronger, will contribute to a noticeable
decrease in the number of secondary electrons released by the cathode. This effect can
be appreciated in Fig. 6b, where a detailed view of the density of secondary electrons at
t = 10 ns is presented. The presence of these spurious oscillation deteriorates the PIC
simulation, affecting it irreversibly at all later times. As an example, Fig. 7 shows the
electron density distribution at the instantt = 43 ns. The results of the PIC simulations
where the dependence of the gain/loss rate on the density have been exploited (FT and TT)
are practically coincident. In contrast, the results of the other PIC simulations show a clear
disagreement in the peak value of the electron density, which the application of the mass
matrix formulation is unable to suppress.

Finally, Fig. 8 show the electric field distribution and the densities of electrons, posi-
tive ions and negative ions as the Trichel pulse develops. In these figures, only one of the
four PIC simulations is presented: the one where the proportionality of the gain/loss rate with
the mass density is used and the mass matrix formulation is not applied (FT). This PIC simu-
lation is practically coincident at all times with the one where the mass matrix formulation is
used (TT). However, some discrepancies have always been observed with the other two PIC
simulations.

The results of PIC simulation (markers) show an excellent agreement with the pre-
dictions of the FCT simulation (solid line). Some minor fluctuations can be noticed
in the electric field distribution (Fig. 8c) and in the electron density (Fig. 8d). These
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FIG. 8. Time evolution of the Trichel pulse. Markers: PIC simulation. Solid line: FCT simulation. (a) Electric
field distribution for the complete gap. (b) Detailed view of the electric field in the vicinity of the cathode.
(c) Detailed view of the low-field region. (d) Electron density distribution in the vicinity of the cathode.
(e) Positive ion density distribution in the vicinity of the cathode. (f ) Negative ion density distribution in the
vicinity of the cathode.

fluctuations occur at the location where the plasma regions begin. At that point, super-
electrons injected from the cathode tend to accumulate, due to the sharp gradient on the
electric field, and are slowly evacuated through the plasma region. However, this small
fluctuation is very localized and does not tend to amplify in time. On the other hand, the
positive ion density (Fig. 8e) obtained by means of the FCT simulation shows the char-
acteristic staircase formation of this numerical technique [15], which is absent in the PIC
simulation.



FIG. 8—Continued
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FIG. 8—Continued

6. CONCLUSIONS

The application of a PIC fluid model to the numerical simulation of transient gas dis-
charges has shown the ability of the method to deal satisfactorily with fast time variations
and sharp gradients.

Two different tests are performed. First, the numerical scheme is checked with the prob-
lem of an idealized electron avalanche in a non-attaching gas. This problem possesses an
analytical solution where the electron density grows exponentially in time while propagat-
ing. Then, the propagation of a Trichel pulse in oxygen is simulated. This is a particularly
difficult test since it combines the presence of very sharp gradients of the particle densities
and the existence of plasma region where the electric field almost vanishes. The results of
the PIC simulation are compared with those obtained from the application of a explicit FCT
algorithm. The agreement between both methods is remarkable.

These tests are used to investigate the effects of the application of the mass matrix
formulation to the model, and to analyze the optimum interpolation of the gain/loss rate
of mass (or particle) density from the grid to the computational particles. In particular, the
analysis shows that more accurate results are always obtained when the proportionality of
the gain/loss rate to mass density is exploited. Therefore, the use of a unique interpolation for
all types of gain/loss rates, where this proportionality is not used, is completely discouraged.
Analogously, the application of the mass matrix formulation may have severe side effects
in PIC simulations, since spurious fluctuations may originate in those regions where the
mass density exhibits sharps gradients. Since the presence of sharp gradients is a common
feature in most of the transient discharges, the use of the mass matrix simulation is only
recommended upon the verification that the numerical solution without mass matrix lacks
discontinuities extending over a few grid points. However, in numerical tests, the application
of the mass matrix formulation was unnecessary when the proportionality with the mass
density of the gain/loss rates was taken into account, since in this case the corrections
introduced by using the mass matrix formulation were small.
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The next step of this study will be to extend this numerical method to the case of
multidimensional geometry since, from the conceptual point of view, this extension poses
no additional complications, contrary to 2D and 3D flux-corrected-transport schemes.

APPENDIX: STABILITY ANALYSIS

Momentum-conserving schemes interpolate the values of both the mass density and the
electric field at the grid points to the computational particles. In contrast, energy conserving
schemes interpolate the grid-defined values of the mass density and the electric field values at
the cell boundaries into the computational particles. Moreover, the order of the interpolation
for the electric field must be one order lower than the one used for the mass density.

The instability of the momentum-conserving scheme observed in PIC simulation of
the Trichel pulse can be understood as a particular case of the well-known “finite-grid
instability” or “ringing instability,” as it is termed in the fields of plasma kinetic simulation
[5, 16, 18] and fluid PIC simulation [3], respectively. This instability is caused by the spurious
coupling of the Fourier modes resolved by the grid and their “alias.” The stability analysis
that we present below follows a line of reasoning analogous to those given in [3, 5, 14].

Let us consider a simplified system consisting of an infinitely long gas discharge channel
where the electrons are the only mobile carriers. These electrons drift across a uniform back-
ground of static positive ions with densityN0 because of the electric field. Since the origin
of the instability is linked to the transport of charge and not to its generation, the evolution
of the electron density will be studied by using the homogeneous continuity equation

∂N

∂t
+ ∂

∂x
(Nv) = 0, (56)

wherex is the axis of the discharge,N(x) is the electron density, andv(x) = −bE(x) is
the drift velocity of electrons with constant mobilityb. Similarly to the Trichel pulse simu-
lation, the total electric field,E(x), is obtained as the superposition of a Laplacian electric
field of constant value,E0, and the space charge field due to the discharge channel,E′(x).
The space charge electric field may be found using the method of disks. By proceeding in
this way, this electric field is obtained as the convolution of a certain function,F(x − x′),
with the charge density. This function is analogous to Green’s function for the electrical
potential, and is numerically implemented as an influence-matrix operator [22].

Equation (56) possesses a trivial equilibrium solution where the electron density is con-
stant and equal to the positive ion density,N0, and the total electric field is the Laplacian
electric field,E0. Let us now assume that this equilibrium solution is subjected to a small
perturbation of the electron density,N ′, and of the electric field,E′. The evolution of the
perturbations will be described by

∂N ′

∂t
+ v0

∂N ′

∂x
+ N0

∂v′

∂x
= 0, (57)

wherev0 = −bE0.By a Fourier decomposition of the perturbation, Eq. (57) can be written as

(−ω + v0k)N̂ ′k + kN0v̂
′
k = 0, (58)

whereN̂ ′k andv̂′k are the Fourier components of the perturbations associated with the mode
with wavenumberk. In Eq. (58), a temporal dependence of the forme−iωt is assumed for
the Fourier components.
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The Fourier components of the velocity and electric field perturbations are related as

v̂′k = −bÊ′k = bqeN̂ ′k F̂k,

whereqe is the absolute value of the electron charge. Taking into account thatF is a real
odd function of its argument, the Fourier componentF̂kis purely imaginary,F̂k = i=(F̂k).
Moreover, since|F(x − x′)| is a decreasing function of|x − x′| and F(x − x′) > 0 for
x − x′ > 0, it will be =(F̂k) < 0 for k > 0 and=(F̂k) > 0 for k < 0. Therefore, Eq. (58)
can be rewritten as

ω = v0k+ ibqeN0=(F̂k)k (59)

and all modes will be damped down in the continuous system, since=(ω) < 0.
When the effect of the discrete grid spacing,H , is taken into account [3], the filtered and

aliased version of ˆv′k must be introduced in (58), resulting in the momentum-conserving
scheme

(−ω + v0k)N̂ ′k + kbqeN0Ŵk F̂m
k

j=∞∑
j=−∞

N̂ ′k+ jkg
Ŵk+ jkg = 0, (60)

wherekg = 2π/H, Ŵk is the Fourier component of the assignment function shape, andF̂m

is the discretely sampled version ofF̂ . Using the periodicity ofF̂m
k [14], the dispersion

relation may be written as

1− ibqeN0=
(
F̂m

k

) j=∞∑
j=−∞

kj Ŵ2
kj

ω − v0kj
= 0, (61)

wherekj = k+ jkg. We always assume that the resolution is fine enough to achieve a good
sampling ofF̂m

k so that the properties of̂F(k) are equally valid for its discretely sampled
version. In other words,̂Fk is band-limited to the principal zone− 1

2kg < k < 1
2kg.

In contrast, the dispersion relation for the energy-conserving interpolation scheme is
found to be [14]

1− i
bqeN0=

(
F̂e

k

)
sin
(

1
2kH

)/
1
2 H

j=∞∑
j=−∞

k2
j Ŵ

2
kj

ω − v0kj
= 0, (62)

whereF̂e is the discretely sampled version ofF̂ that now relates charge density at the nodes
of the grid to electric field at the cell boundaries.

A direct comparison between the dispersion relations of the energy-conserving and
momentum-conserving schemes reveals a clear difference in the behavior of the aliases.
Let us consider a simplified case where only a single alias is retained. Equations (61) and
(62) can then be written, respectively, as

ω = v0kj + ibqeN0=
(
F̂m

k

)
kj Ŵ

2
kj
, (63)

ω = v0kj + ibqeN0
=(F̂e

k

)
sin
(

1
2kH

)/
1
2 H

k2
j Ŵ

2
kj
. (64)

The dispersion relation for the momentum-conserving scheme is linear inkj . Therefore,
the aliases withj > 1 and j < −1 will have=(ω) > 0, provided that− 1

2kg < k < 0 and
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0< k < 1
2kg, respectively. This result shows that the modesk near the limit of the principal

zone are likely to destabilize the momentum-conserving scheme, since the filtering of these
modes inside the principal zone and the filtering of the first positive or negative alias are
comparable [14]. In contrast, for the energy-conserving scheme,=(ω) < 0 for all the aliases,
sinceω is quadratic inkj and=(F̂e

k)/sin( 1
2kH) < 0, and all modes are damped down.

The zeros of the dispersion relations (62) and (61) have been obtained numerically by
applying a Delves–Lyness algorithm [10, 19]. As expected, the inclusion of an alias beyond
k+ kg and k− kg gives rise to very small differences in=(ω). For each valuek, three
values ofω were found. In Fig. 9, the most unstable of these three solutions is shown for

FIG. 9. Dimensionless growth rate of the perturbations corresponding to the most unstable mode for (a)
momentum-conserving and (b) energy-conserving schemes of interpolation. The growth rate scale is defined as
ω∗ = kgv

∗, wherev∗ = bE∗ andE∗ = qe|=(F̂k)|N0.
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FIG. 10. Electron density distribution (upper graph) and number of computational particles per 1/10 of cell
(lower graph) att = 20t0, as predicted by the momentum-conserving PIC simulation.

both schemes. Clearly, the momentum-conserving scheme is unstable, particularly for large
values ofk, due to interaction with the first unstablek± kg aliases.

These results are in fair agreement with the instability arising in the momentum-
conserving PIC simulation of Eq. (56). In the PIC simulation, the cylindrical discharge
channel connects two infinite parallel plates separated by a distanceL, which is divided
in 100 computational cells. Electrons are continuously being injected at the cathode to
maintain the constant initial electron density. The upper part of Fig. 10 shows the electron
density distribution att = 20t0, with t0 = L/bE0. The instability observed in the particle
density gives rise to the clustering of electrons in packets separated by a distance of 1.9H
approximately. This spacing is smaller, but very close to 2H , which is the minimum wave-
length that can be sampled by the grid. This finding is consistent with our interpretation that
the instability of the momentum-conserving PIC simulation is triggered by the first aliases
k± kg. The clustering can be observed in the lower part of Fig. 10, where the histogram of
particle position is shown with a resolution ofH/10.
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