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A fluid particle-in-cell (PIC) model is proposed for the numerical solution of the
continuity equation of electrons and ions in transient electrical gas discharges. The
reactions occurring in a gaseous discharge, such as ionization of neutral molecules,
electron attachment, and recombination between electrons and ions, are implemented
through the variation of the mass of the computational particles used in the simulation.
Two different forms of interpolation of the gain/loss rates from the grid to the com-
putational particles are suggested, depending on the reaction type. The PIC model
is first applied to the problem of an idealized electron avalanche in a non-attaching
gas. This problem possesses an analytical solution where the electron density grows
exponentially in time as it propagates, but keeps the square-wave form of the initial
electron distribution. This problem is used to validate the optimum interpolation of
the gain/loss rate and to analyze the effect of the mass matrix formulation of the
PIC model. Then, a more realistic model is applied to simulate the propagation of a
Trichel pulse between a sphere and a plate. In this case, the continuity equation for
electrons and positive and negative ions, coupled to the Poisson equation, has been
solved. This second test has proved the ability of the present numerical method to deal
with those discharges dominated by the space charge effect. The results of the PIC
simulation are compared with those obtained from the application of a flux-corrected
transport method. © 2001 Academic Press

Key Words:77xx; 77F05; 77H05; particle-in-cell; gas discharges; source terms;
gain/loss rate; continuity equation; space charge.

1. INTRODUCTION

Electrical gas discharges are the result of many complex reactions that occur bot
the bulk of a gas and at electrodes. In the bulk, electrons are accelerated by the ele

1 This work has been supported by the Spanish DGICYT, under Contract PB96-1375.

47

0021-9991/01 $35.00
Copyright© 2001 by Academic Press
All rights of reproduction in any form reserved.



48 SORIA, PONTIGA, AND CASTELLANOS

field and can ionize the surrounding region, thus producing positive ions. Also, electr
can attach to neutral molecules to form negative ions, and electrons and negative ions
recombine with positive ions to form again neutral molecules. At the electrodes, seconc
electrons can be released by the impact of ions and/or photons generated in the bulk
these reactions develop in very short times, typically a few hundreds of nanoseconds.

Many different numerical methods have been commonly applied to simulate the pro
gation and time evolution of gaseous discharges, such as hybrid methods of characteri
[1, 9, 25], flux-corrected transport (FCT) methods [11, 15, 20, 21], finite element (F
methods [26], and, more recently, mixed FE—FCT methods [12, 13]. Even though partic
in-cell (PIC) methods are certainly leading methods in the area of plasma kinetic simulatit
[5, 14], PIC fluid models have not been so commonly applied to the simulation of gase«
discharges. However, some relevant works have recently appeared, particularly in the
of stationary glow discharges [17].

PIC methods have the advantage of being numerically less diffusive than most of
others numerical techniques. This fact guarantees the high accuracy of the simulation,
intransient and in stationary problems [7, 8, 17]. Moreover, its extension to 2D and 3D po
no additional problems. The major drawback of PIC methods is that they usually requ
longer computational times than other methods, like FCT for example. Nevertheless,
inconvenience is progressively losing strength as the power of computers increases ste:
For example, the simulations described in this paper were all carried out using a pers
computer.

In this paper, a PIC method is formulated and applied to the numerical solution of
continuity equation of charge carriers created by an electrical gas discharge. In partict
this study is concerned with transient gas discharges where the space charge effect
lead to strongly non-uniform electric fields and very steep density gradients, as occur
the development of Trichel pulses, the propagation of streamers, pulsed corona, etc.

The paper is organized as follows. In the first two sections, the PIC method is formulat
the interpolation of the gain/loss rate from the grid to the computational particles is d
cussed, and the implementation of a second-order-in-time algorithm is explained. Then,
particle-in-cell model is applied to two different problems. The first problem consists in
idealized electron avalanche propagating in a non-attaching gas. The rate constants ar
velocity of electrons are given some specific functional forms that allow us to obtain a si
ple analytical solution. This problem is then used to validate the optimum interpolation
the gain/loss rate and to analyze the effect of the mass matrix formulation of the PIC mo
The second problem, which is much more complex, is a realistic model of the propagat
of a Trichel pulse between a sphere and a plate. No analytical solution can be obtaine
this case and the results obtained from the PIC simulation will then be compared with th
obtained from a FCT method.

2. THE CONTINUITY EQUATION

The one-dimensional partial differential equation governing the mass density of a che
ical species in a gas discharge can be expressed as

ap d _
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wherep is the mass density,is the velocity, andis the gain/loss rate of the mass density.
This last term accounts for processes such as ionization, attachment, and recombin
that result in a variation of the mass density. For simplicity, diffusion has been ignorec
Eq. ().

The mass density can be written as

(X, 1) = mN(x, t), (2)

wherem is the mass of the physical particles, which is constant,\ad t) is the number
density of particles, which usually changes by many orders of magnitude due to the phyzs
processes indicated before.

In PIC simulations, physical particles are simulated by means of computational pa
cles.A common solution adopted in PIC simulations to account for chemical reaction:
to allow the mass of the computational particles to vary in time [17, 24]. To express t
approach through continuous equations, it is convenient to rewrite Eqg. (2) as the produ
a density offictitious carriers NV (x, t), whose number is conserved, and the mass of the:
carriers,u (X, t), which changes continuously in time,

PO, 1) = (X, DN (X, 1). (3)

The density of these fictitious carriers will therefore satisfy a homogeneous contint
equation
N 0

S TV =0, (4)

while the equation governing the mass of carriers can be obtained by substituting Eq.
in (1),
du

a = S(Xv t)/Nv (5)

whered/dt represents the Lagrangian time derivatgdt = 9/dt + vd/9X.

3. THE PARTICLE-IN-CELL MODEL

In PIC simulations, the mass density and the particle density are represented by apy
imated values on an array of grid points. The interaction between the different specie
also calculated on the grid points. In contrast, the transport of mass is simulated by me
of computational particles auperparticlesSuperparticles can be regarded as finite-siz
clouds of physical particles, their position being the center of mass of the clouds and t
velocities being the mean velocities of the clouds. The computational particles, labeled v
the subscripp, will therefore be characterized with a mass a positionx,, and a velocity
vp.

The mass and momentum density at the grid pejrtan written as [3]

1
P D) = zpjupwuxg — Xp), (6)

1
(Po)(Xg, 1) = D pvpW(IXg = Xpl), ™
p
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whereH is set to the grid spacing aM is the assignment function shape, with

> W(lxg — Xpl) = 1. ®)
g

Similarly, the number density of carriers at the grid points and the associated first veloc
moment can be expressed as

1
N(xg,t) = ﬁzpjwuxg—xpn, 9
1
W), ) = Zp: vpW(|Xg — Xp)- (10)
These approximate solutions satisfy the homogeneous continuity equatitf . (4),

since differentiating Eq. (9) with respect to time leads to

N 1 dXp.,, 0
- = ﬁgp:ﬁwwg—xpn =5 V). (11

However, in fluid PIC simulation of gas discharges, the velocity of species at the g
points is entirely determined by the local electric field, which is in turn obtained from tt
charge density values on the grid. Therefore, in order to guarantee the internal coher
of the PIC model, the momentum density, as expressed by Eq. (7), is forced to satisfy

(pV) (Xg. 1) = p(Xg, DV(Xq. 1), (12)

In general, particle velocities should not be determined from the direct interpolation oft
grid-defined values, since in that case Eq. (12) would not be satfslistiead, a modified
velocity, u(xg, t), is interpolated to the computational particles,

vp =Y U(Xg HW(IXg — Xp). (13)
g

Substitution of this equation in (12) shows that this modified velocity can be obtained frc
the solution of

> CiglXg, 1) = pxg, V(g 1), (19)
.

where
. 1
Cog = iy D 1pW(IXg = XphW(lxg = Xpl) (15)
p

is themass matrixassociated with the mass density.

2 Grid-defined values of the particle velocities can be directly interpolated winemm@st grid poin{NGP)
interpolation is chosen as the assignment scheme.
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The displacement of the computational particles can then be calculated by integratin

equation of motion
dx
d—t" = vp. (16)

3.1. The Interpolation of the Gain/Loss Rate

In gas discharges, the terms appearing in the gain/loss rate may have many diffe
forms, depending on the type of reactions that participate in the discharge. However,
every species, these terms can be roughly classified into one of these two categories:

e Gain/loss rate terms that are independent of the mass density of the sgecj¢s,
e Gain/loss rate terms that are proportional to the mass density of the species, that

S'(x,t) = K(x,t)p(x, t).

In general, the proportionality constaiit(x, t), or the complete gain/loss rate in the first
caseS(x, t), depends on the mass density of the other species and on the electric field, w
is obtained by solving Poisson’s equation. Examples of reactions whose gain/loss rate:
proportional to the mass density are, for the electrons, ionization, electron attachmer
neutral molecules, and recombination between electrons and positive ions. In contrast
positive and negative ions, ionization is an example of a reaction whose gain/loss rat
independent of the mass density of ions.

In this section, two different forms of interpolation of the gain/loss rates from the grid
the computational particles will be presented, according to the previous classification.
first form of interpolation can be applied to both categories. Indeed, this form of interpolati
has also been applied in PIC models of chemically reacting fluid flows [24]. However,
will be shown below, the application of this type of interpolation to those gain/loss rat
pertaining to the second category will always result in solutions with aworse accuracy. Si
the evolution of transient gas discharges is governed by electron density, and the gain
rate of the electron density is proportional to itself, it is important to use the second fo
of interpolation whenever it applies.

3.1.1. Gain/loss rate terms independent of the mass dengighas been said previously,
the mass of computational particles is hot constant, but changes in time. The rate of varic
of the mass of every computational particle is interpolated from the grid points using
same assignment function shape,

dup _

T = zg:s(xg, DW([%g — Xpl). (17)
According to Eq. (5),
t
S(Xg, t) = /\S/_((Xxggt)) (18)

would seem to be the proper choice. However, substitution of Egs. (6) and (7) in Eq.
shows that the rate of variation of the mass of computational particles should satisfy

1 du
" zp: d—tpW(|xg — Xpl) = S(Xg, 1). (19)
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Taking into account (17), the above equation can be written as

D Cags(Xg. t) = S(xg. 1), (20)
S

where

1
Cov =4 Z W(|Xg — Xp)W(|Xg — Xp|) (21)
p

is the analogous to thmass matrixHowever, this mass matrix is not associated with the
mass density but with the number density of computational particles. The rate of m
variation at the grid pointss(xg, t), should then be obtained by solving the system o
linear equations (20). When the mass matrix formulation is not used@gdt) is taken
as expressed by Eq. (18), numerical diffusion of the gain/loss rate will appear betwe
adjacent grid point3.

The mass matrix formulation must be used with care in the presence of a discontint
that extends over very few cells. In such cases, the evaluation of the mass matrix acros
discontinuity leads to unphysical oscillations of the interpolated quantity [6].

3.1.2. Gain/loss rate terms proportional to the mass density.these cases, the rate
of variation of the mass of carriers is also proportional to the mass of carriers itself, sir
according to Eq. (5),

dﬁ _ S'(xg, ) KX, 1)p(X,1)
dt — N(Xg, )  N(X1)

= K (X, ). (22)

Therefore, when interpolating grid-defined values to the computational particle, only 1
proportionality constanK (x, t) should be interpolated. The rate of variation of the mas
of a computational particle can then be written as

dup

g =M > k(xg. HW(IXg — Xp]). (23)
[¢]

wherek(xg, t) may differ from K (xg, t) to satisfy Eq. (19). Substitution of (23) in (19)
gives

D Cy gk(Xg. 1) = S (xg, 1) = K(Xg, 1) p(Xg, 1), (24)
g/

wherecg’g, is the mass matrix of the PIC formulation. Therefore, as in the previous ca:
the value ofk(xg, t) that is interpolated from the grid to the particles should be obtaine
from the solution of a system of linear equations.

Clearly, the mass matrix formulation would not be required in those cases Wligre)
is independent of the spatial coordinate, since

1
> CogKM =KM®F D npWixg—xph Y W(lxg = xpl) = K(Dp(x, ). (25)
g p g

3 As in the case of velocity, Eq. (18) can be used with no numerical diffusion when a NGP interpolation
chosen for the assignment scheme.
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In contrast, using the first type of interpolation, a constant valu¢ dbes not suffice to
satisfy Eqg. (20) since it is also required thai, t) /N (x, t) be independent of. This is
verified when the mass of all computational particles is identical, which is hardly found
PIC simulations of gas discharges.

There are several reasons why this type of interpolation should always be prefer
The first one is that the interpolated functiod(x, t), will always be smoother than
K(x, t)p(X,t)/N(x,t). This is so because the gain/loss rate is proportional to the ma
density and, in gas discharges, the mass density is expected to vary exponentially in
with K. In the second place, this type of interpolation will never assign mass to thc
computational particles with zero initial mass. This property is consistent with the fact tl
these zero mass particles do not contribute to the grid values of the gain/loss rate. /
result, numerical diffusion of mass is prevented at propagating fronts, which are usu
present in transient gas discharges. Finally, with this interpolation, the mass of partic
is guaranteed to remain always positive, since it(is (,)/dt, and notdu/dt, that has
to be integrated in Eq. (23). The assignment of negative mass to computational parti
usually has disastrous consequences in PIC simulations.

Allthese advantages together result in very accurate solutions, so that the mass matri
mulation is often not required. In constrast, when the other scheme of interpolation is us
the simulation will commonly produce worse results, unless the mass matrix formulati
is included in the algorithm.

This type of interpolation can also be extended to those gain/loss rates that are
portional to an integer power of the densif;, = K(x,t)p(x,1)". In such cases, only
K (x,t)p(x, )" should be interpolated from the grid to the computational particles.

3.2. The Computational Algorithm

In contrast with Ref. [17], the time integration scheme used in this paper is not implic

that is, the continuity equation is successively integrated in time. Fully implicit plasma flu
codes are particularly efficient for calculating steady-state solutions, since implicit diff
encing eliminates stability constraints on the time step. In the work of Lagerial17],
a PIC simulation of a DC glow discharge is performed. In this kind of electrical discharc
the solution is usually sought at the stationary state and therefore an implicit methoc
integration is certainly a right choice. Explicit methods have the advantage of being simj
and having a lower computational cost per time step, although the length of the time ¢
is limited. Since our PIC formulation deals primarily with transient gas discharges tt
develop in very short times (tens of nanoseconds), an explicit method of integration the
second-order accurate in time (second-order Runge—Kutta method) has been preferr:
listing of the computational steps in a computational cycle follows:

1. The mass of computational particles is interpolated to the grid to obtain the m
densities of species (Eq. (6)) and the net electrical charge.

2. The electric field at the grid point is then determined by solving Poisson’s equatio

3. The gain/loss rate§(xgy, t) and S*(xg, t), and the velocities of species(xg, t), are
evaluated at the grid points. Then the mass matricggs,andCq ¢, are computed (Egs. (15)
and (21)) and the systems of equations (14), (20), and (24) is solved.

4. The grid values afi(xg, t), S(Xg, t), andk(xg, t) are interpolated back to the particles
to obtainv, = dx,/dt anddu,/dt.
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5. Time is advanced by a half stngAt, and the particles’ positions are updated to
Xp + 3vpAt. Then steps 1 to 4 are repeated, and the particles’ velocities and the rate
mass variation of particles are evaluated at this intermediate step.

6. Finally, the particles’ positions and the mass of particles are updated at a comp
time step,At, using a second-order Runge—Kutta approximation,

dxp
Xp(t 4+ At) = Xp(t) + At —2 (26)
dt (t+2Atxp+1 vat)
du
pp(t+ AL = up(t) At~ P . 27)
t (t+1Atxp+1vpAt)

7. The computational cycle is restarted at At.

The same computational steps will be present if a higher order of integration in time is us
the only difference being that a greater number of intermediate steps will be required.

4. IDEALIZED ELECTRON AVALANCHE

This test problem is based on the continuity equations that govern a one-dimensic
electron pulse propagating in a nonuniform electric field. As the electron pulse advan
from the cathode to the anode, more electrons and positive ions are generated due to th
ization of the neutral molecules. The gas filling the space between the electrodes is asst
to be a non-attaching gas, so that no negative ions are generated during the developm:
the discharge. The continuity equations corresponding to this problem can be written &

dpe

H + 7(peve) %(X9 t)v (28)

) (29)

where pe and p, are the mass densities of electrons and positive ions. The velocity
positive ions is set to zero, since it is several orders of magnitude smaller than the velo
of electrons,ve. The gain/loss rates of mass density for electrons and positive ions ¢
identical and proportional to the electrons’ mass density,

S, 1) = Sp(x, 1) = K(X)pe(X, t).

For simplicity, the effect of the space charge on the electric field has been ignored. Theref
both the velocity of electrons and the rate constintare assumed to be known functions
of the spatial coordinate. Finally, diffusion of electrons and ions has also been ignored.
A simple analytical solution of Egs. (28) and (29) can be obtained for the case when
electron velocity and the rate constant are related as
dve
KX)=c+ — 30
) =c+ - (30)
wherecis a constant. In such a case, the continuity equation for electrons can be transfor!
into
dpe _ dpe dpe

T + Uea_x = Cpe(X, 1), (31)
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whose solution can be expressed as

pe(X, t) = pe(Xo, 0) eXp(ct), (32)

andxg is the starting position of an electron that arrives at the coordiafter traveling
a timet.

Once the mass density of electrons has been determined, the positive ion distribution
be easily obtained after performing a time integration of Eq. (29),

t
po(x.t) = K(x) / pe(Xo, 0) expict) dt. (33)
0

Setting the initial condition for electrons and ions to

1, for Xy < X < Xp,
pe(X, 0) = ) o+ (X, 0) =0, for all x. (34)
0, otherwise

the analytical solution for the mass densities can be expressed as

exp(ct), for A(Xp, X) <t < A(Xa, X),

pe(x,t) = . ¢ (35)
0, otherwise
K (x) EXPXCliin) — exp(ctmax)’ fort > A(Xp, X),

p+(X, 1) = c (36)
0, otherwise

whereA (X', X) is the time taken for an electron to travel frothto x; that is,

AX, X) = /x dx (37)

- Ve(X) '

andtmin = minft, A(Xa, X)], andtmax = max[0, A (X, X)].

4.1. The PIC Simulation

This test simulation has been primarily designed to make evident the effects of (a) us
or not using the mass matrix formulation when interpolating the velocity of the speci
(b) using or not using the mass matrix formulation when interpolating the gain/loss ra
of the mass densities, and (c) using or not using the recommended type of interpolatior
the gain/loss rates of the mass densities.

For the velocity, not using the mass matrix formulation means that the particle-interpols
grid velocity is directly the grid-defined velocity, thatigxg, t) = v(Xg, t). Forthe gain/loss
rates, it means that eithefxg, t) = S(xg, t) /N (Xg, t) 0rk(xg) = K(Xg) is interpolated to
the computational particles, depending on the choice made in (c).

The particle-in-cell simulation of this test has been run on a uniform grid with 101 nod
using acloud-in-cell(CIC) assignment scheme. The initial pulse of electrons extends fro
Xq = 0 tox, = 40, and, for convenience, the constahias been taken &s= In10 and the
velocity of electrons as

ve(X) = p + qcogax), (38)
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with p=7,q = 4 anda = 37/20. The computations are initiated with 400 “superelec-
trons,” that is, computational particles associated with the physical electrons. This num
corresponds to an averaged density of 10 superelectrons per cell. The PIC simulation
been followed up to 10 units of time, and density profiles at the instantandt = 10 are

presented in Fig. 1 for the electrons and in Fig. 2 for the ions. In these figures, the e
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FIG. 1. Electron mass density at timés= 1 (left) andt = 10 (right) for an idealized electron avalanche.
Thick solid line: exact solution; circles: PIC simulation. The PIC simulation has been carried out in differe
forms, as described by the three characters of the upper-left label. First character: the mass matrix formulatio
been applied (T) or not applied (F) to the interpolation of velocity. Second character: the mass matrix formula
has been applied (T) or not applied (F) to the interpolation of the gain/loss rate. Third character: the proportion:
of the gain/loss rate to density is exploited (T) or ignored (F).
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FIG. 1—Continued

solution is marked by a thick solid line, while the numerical simulation is represented w
circles connected by a thin line. In each graph, the curves on the left (right) correspon
t = 1 (t = 10) and the density values must be read using the vertical axis on the left-he
side (right-hand side) of the graph. For the electrons (Fig. 1), the three-character label
has been inserted in the upper-left corner of the graphs indicates the options selected i
simulation. Each character may be either T (true) or F (false) and order of the characte
in correspondence with items (a), (b), and (c) listed at the beginning of this section. Her
the label TFT in Fig. 1f means that the PIC simulation has been performed using the n
matrix formulation for the velocity but not for the gain/loss rate of mass density and tt
the interpolation of the gain/loss rate has been made as described in Section 3.1.2.
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FIG. 1—Continued

According to the exact solution, the electron density will grow exponentially in time
increasing one order of magnitude for every unit of time, but keeping the initial rectangu
distribution while propagating. Moreover, since the velocity of the pulse is identical at t
limits x4 andxy, the width of the pulse should be the same at all times.

Let us now compare the results of different PIC simulations among themselves and v
the analytical solution. Figure 1a shows the electron density distribution for the case wi
the matrix formulation is not used and the interpolation of the gain/loss rate is perforn
without exploiting its proportionality with the mass density (Section 3.1.1). Clearly, tf
temporal evolution of the electron density is poorly reproduced: As soon as the simulat
starts, the electron density exhibits a number of oscillations whose amplitudes increase
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time. These oscillations are practically in phase with the fidtig) /ve(X). This is because
K (X)p(x)/N(x) is the rate of mass variation that is interpolated to the particles\Naixd
anduve(x) are phase-alike.

The results of this simulation are not essentially modified when the mass matrix f
mulation is applied to the electron velocity (Fig. 1b), but they do change when the m
matrix formulation is applied to the interpolation of the gain/loss rate (Fig. 1c). This fa
shows that the interpolation errors affecting the gain/loss rate are much more impor
that those affecting the velocity. This is in turn a direct consequence of interpolating
gain/loss rate without taking advantage of its proportionality to the mass density. In t
case, the rate of mass variation interpolated to the particles is proportional to the n
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P, 10

FIG. 2. Positive ion mass density at times= 1 (left) andt = 10 (right) for the simulation of an idealized
electron avalanche presented in Fig. 1e. Thick solid line: exact solution; circles: PIC simulation. (a) The m
matrix formulation has not been applied. (b) The mass matrix formulation has been applied.

density itself, which increases exponentially in time. Therefore, the interpolated quan
will be affected by large errors as time elapses. When the mass matrix formulation is u
(Fig. 1c), interpolation errors of the gain/loss rate are suppressed and the results are |
accurate. However, the application of the mass matrix formulation has an undesirable
effect: spurious oscillations appear at the limits of the electrons pulse, where the elec
density is discontinuous. As has been mentioned earlier, these unphysical oscillations
commonly found when the mass matrix formulation is applied across a discontinuity tl
extends over very few cells [6].
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Finally, when the mass matrix formulation is applied to both the velocity and the gain/Ic
rate interpolation (Fig. 1d), the numerical simulation is improved and matches the ana
ical solution more closely, except at the limits of the electron pulse, where the spuric
oscillations become larger.

When the interpolation of the gain/loss rate is performed by taking advantage of its
portionality with the mass density (Section 3.1.2), the agreement between the PIC simula
and the exact solution is complete, even though the mass matrix formulation is not app
to the velocity and to the gain/loss rate interpolation (Fig. 1e). This result clearly shows t
the interpolation of the gain/loss rate is now being performed much more accurately tl
in the previous cases.

Adding the mass matrix formulation to the velocity interpolation (Fig. 1f) or to th
gain/loss rate interpolation (Fig. 1g) produces a worsening of the PIC simulation. T
deterioration of the simulations is due to the loss of consistency between the form:
which K(x) andve(x) are interpolated from the grid to the particles, since there exists
close relation between the rate constant and the electron velocity (Eq. (30)). Moreover,
application of the mass matrix formulation gives rise to spurious oscillations at the ed
of the square pulse, as has been previously observed.

However, when the mass matrix formulation is applied to both the interpolation of t
velocity and the gain/loss rate (Fig. 1h), the internal consistency is recovered and the
simulation resembles more closely the exact solution, but unphysical oscillations persi:
the limits of the square pulse, thus making this PIC simulation unacceptable.

There is a significant coincidence between the PIC simulations shown in Figs. 1c :
1g and Figs. 1d and 1h, respectively, even though they are all unsatisfactory. The
difference between these simulations is the type of interpolation used for the gain/loss |
either without exploiting of its proportionality with the mass density (Figs. 1c and 1d)
by taking advantage of this proportionality (Figs. 1g and 1h). This agreement indicates:
the choice of interpolation for the gain/loss rate is of secondary importance when the m
matrix formulation is applied to the gain/loss rate, since interpolation errors of the gain/I
rate have been suppressed by the use of that formulation. However, the interpolation o
gain/loss rate without exploitation of its proportionality to density is not a valid option i
simulations of gas discharges, since the application of the mass matrix formulation \
always be required, and this will introduce necessarily spurious unphysical oscillation:
the discontinuities. The presence of discontinuities and sharp gradients is not exceptic
but rather the rule, in real gas discharge problems.

In conclusion, the optimal PIC simulation is the one obtained by using the interpolati
that exploits the proportionality to mass density of the gain/loss rate, and not apply
the mass matrix formulation to the velocity and gain/loss rate (Fig. 1€), in order to av
the unphysical oscillations associated with the presence of discontinuities. Only if we
certain that the grid resolution is high enough to resolve the density gradients, the n
matrix formulation for velocity and gain/loss rate may be added if an even more accur
solution is necessary.

Regarding the mass density of positive ions, the exact solution predicts an exponel
growth in time modulated by the rate constant, which has a periodic character due tc
relation with the electron velocity (Eq. (30)). In contrast to the case of electrons, the gain/I
rate for the mass of ions is independent of the mass density of ions. Therefore, in the
simulation, the rate of variation of the mass of the superions has to be evaluated as desc
in Section 3.1.1.
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Figure 2 shows the results of the PIC simulation for the positive ions associated with
electron density shown in Fig. 1e. The mass matrix formulation for the interpolation of t
gain/loss rate of ions has not been applied to the PIC simulation presented in Fig. 2a, b
has been applied to the simulation corresponding to Fig. 2b. There is fair agreement betv
the numerical results and the exact solutions in both simulations, although the simula
corresponding to Fig. 2b follows more closely the exact solution. The negligible effect
using the mass matrix formulation can be understood by looking carefully at the interpola
quantity, S (x, t) /N, = K(X)pe(X, t)/N . Since the positive ion velocity has been set to
zero, the computational particle density is constant in time (10 particles per cell). Moreoy
the electron mass density is constant as well, as shown in Fig. 1e. Therefore, only the
constanK (x) is subjected to the mass matrix correction. This situation is somewhat simil
to the case where the gain/loss rate of electrons was interpolated by taking advantage
proportionality with the mass density. And, as in that case, the corrections introduced
the mass matrix formulation are negligible (cf. Figs. 1e and 1h).

Finally, Fig. 3 shows the superelectron densiy, corresponding to the case presentec
in Fig. 1e. Care must be taken not to confuggwith the number density of electrons,
which is proportional to the electron mass density. Instd&ds a density of computational
particles. As in the previous graphs, the curve on the left (right) corresponds to the ti
t =1 (t = 10). The strong oscillations exhibited by the density of superelectrons are as
ciated with the spatial dependence of the electron velocity. At the minima, the density
computational particles can be as low as three superelectrons per cell. However, since
mass of every superelectron is different, a constant electron density distribution may be
curately represented by a strongly oscillating superelectron density. The weak fluctuati
that can be noticed in the electron density (see Fig. 1e) are associated with these minin
the superelectron density.

40 +—r—1r

30 -

0 T T - T - T ' T
0 20 40 60 80 100
X

FIG.3. Superelectrondensity attimes= 1 (left) andt = 10 (right) for the simulation of an idealized electron
avalanche presented in Fig. le.
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5. DEVELOPMENT OF A TRICHEL PULSE

The problem of a Trichel pulse propagating in low-pressure oxygen (50 Torr) has be
investigated by Morrow [21] using an explicit flux-corrected transport (FCT) algorithm ar
other techniques described by Morrow and Cram [23]. Here, this problem will be usec
check the suitability of the PIC model to simulate real gas discharges.

The Trichel pulse is assumed to develop between a sphere of radiuS mm and an
infinite plane at a distanak= 20 mm apart. The sphere is subjected to a high negative vo
age,V = —2900 V, while the plane is grounded. The discharge is modeled as a cylindri
channel of radius 4 mm with a uniform radial distribution and a variable axial distributic
of charge.

The one-dimensional continuity equations along the axis of symnxetrgn be written as

INe

3te + 5 (Neve) = lvelNe = nlvelNe — BN N, (39)
N,
ij—kaﬁx(v_‘_'\h—):a|ve|Ne_'BNEN+_IBN_N+’ (40)
IN_ 9
0 + Bix(vJ\L) = nlvelNe — BNLN_, (41)

whereN is the number density, 8, andy are the ionization, recombination, and attachmen
coefficients, and the subscripgs+, and— refer to electrons, positive ions, and negative
ions respectively. Similarly to the previous simulation, electron diffusion has been omit
in Eq. (39). The reader is referred to the work of Morrow [21] for a detailed description
the transport coefficients used in the simulation.

Most of the transport coefficients depend on the electric field. The electric field along
x-axis is obtained as the superposition of the Laplacian electric field, and the space-ch
field due to the discharge channel. The Laplacian electric field is obtained by the wi
known method of images. The space-charge electric field, with homogeneous bount
conditions at the electrodes, is obtained by the method of disks. Basically, the metho
disks assumes that the discharge channel may by discretized in a number of thin disks
uniform charge density. The contribution of disks to the space-charge electric field is tl
obtained by images as well.

The boundary conditions for the electrons and ions are

N_(0,t) = O, (42)
N, (d,t) =0, (43)
Ne(0,t) = NP + NI, (44)

whereN® and N} are the numbers of secondary electrons released at the cathode by
impacts of photons and ions, respectively. Denoting’pwndy; the efficiency factors of
these processes, the number of secondary electrons can be written as

NPO,t) = — 2 4(0,1). 45

e (0, 1) |Ue(0,t)|¢( ) (45)
i _ Vi

Ng(0, 1) = 100, D] N+ (0, t)[v4.(0, 1), (46)

whereg is the number of photons hitting a unit surface of the cathode in a unit time [21]
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5.1. The PIC Simulation

In this section, we explain different aspects of the numerical implementation of this P
simulation. The assignment scheme and its influence on the stability of the simulatior
first discussed. Then, some details regarding the computational grid used in the simule
are given. Finally, the interpolation of the gain/loss rate terms of Eqgs. (39)—(41) from t
grid to the particles and the implementation of the physical boundaries are described.

5.1.1. The assignment schemé the test model simulation presented in Section 3
the electric field at the grid points and, therefore, the particle velocity were prescrib
externally through Eq. (38). In the simulation of the Trichel pulse, in contrast, the elect
field at the grid points is obtained from the grid-defined values of the particle densities. T
method of disks is numerically implemented by means of an influence matrix operator [2
whose product with the grid-defined charge density gives the space charge-field. Once
total electric field (Laplacian plus space-charge electric field) is determined, the parti
velocities are obtained from constitutive relations based on experimental data.

This difference has important consequences on the assignment scheme that may be
in the PIC simulation. In the test model, both the velocity of computational particles and t
gain/loss rates were interpolated from the grid to particles using a CIC assignment sche
This type of PIC simulation is classified as “momentum-conserving” [14]. However, th
assignment scheme is unstable when it is applied to the numerical simulation of the Tric
pulse. The instability cannot be eliminated by shortening the time step or increasing
number of grid points and/or the number of computational particles. At best, these resorts
only delay the onset of the instability by a few nanoseconds. An example of this instabil
is presented in Fig. 4 (cf. Fig. 8d) for the electron densitly-at60 ns.

In contrast, the PIC simulation becomes stable when an “energy-conserving” sche
is used instead. In this assignment scheme, the electric field is evaluated directly at

N, x1077 (m3)

8 10

FIG. 4. Numerical instability of the PIC simulation of a Trichel pulse when a momentum-conserving scher
is used. The electron densitytat 60 ns is shown in the figure.
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pointsxg11/2, lying midway between the grid pointg andxq1. Then, the velocities of
all computational particles inside the interval[Xg+1] are given an identical value: the
particle velocity corresponding to the electric fieldkgty/,. Clearly, this particle velocity
interpolation is equivalent torsearest grid poin(NGP) interpolation from a grid whose grid
points are located at the cell boundaries of the original grid. In contrast, the interpolat
of the gain/loss rates from the grid to the superparticles and the interpolation of the ir
of computational particles to the grid will still be performed according to the standard C
interpolation. The resulting scheme is therefore a mixed CIC/NGP assignment scheme

In the Appendix, the stability of momentum- and energy-conserving schemes for a pr
lem simpler than but closely related to the Trichel pulse problem is analyzed.

5.1.2. The computational grid.The PIC simulation has been run on a nonuniforn
grid with 181 nodes identical to the one described by Morrow [21]. The grid has a ve
fine resolution in the region where the electric field is very weak, 84 < x < 4.5 x
10~*m, and becomes coarser as it approaches the cathode and the anode. For compute
efficiency, the physical grid is mapped into a natural grid [4], where the separation betw
nodes is unity,

Xg=9, g=0,...,180

5.1.3. The simulation in the bulk Since Egs. (39)—(41) are written in terms of the num-
ber density instead of the mass density, the computational particles in the PIC simula
will not be characterized by its mass,, but by the number of physical particlgs,,
associated with the computational particle. Both quantities are related as

_ Hp

Hp = H’
wheremis the mass of the physical particle. Of course, the PIC model described in Sectic
is equally valid in the present case, provided thgis replaced by:, everywhere.

The gain/loss rate of the number density of electrons (see Eq. (39)) is proportional to
number density of electrons itself. Therefore, the rate of variatign,dbr superelectrons,
E%, should be evaluated according to the procedure described in Section 3.1.2,

dp_L% -e k e
o Mpzse(xg’ DW(|xg — X3
9

), (47)

wherexg is the position of the superelectron asjdis obtained by solving the following
system of linear equation:

> CoySt(Xg. 1) = [ar]velNe — nlvelNe — BNy Nelx, . (48)
S

If the mass matrix formulation is not used, th&nis set to
S;(Xg, t) = [o|ve] — nlvel — lgN+]xg,t~

For positive and negative ions, however, the gain/loss rates contain terms that are prc
tional and non-proportional to the respective number densities of ions (see Egs. (40)
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(41)). In these cases, the rate of variationugfwill have two distinct contributions that
should be evaluated separately. For the positive ions, for example, we have

dut _
o = 2 S+ (X DW(Ixg = XJ1) + i DSt (%, DW(IXg = Xg1). (49)

g g
Wherexg is now the position of the supercation andands; are obtained by solving the
following systems of linear equations:

D Chy sy 1) = [o]velNelxg i (50)

g
D Coysi(Xg. ) =[—BNeNy — BN_N ]y ;. (51)
"

If the mass matrix formulation is not usesi, ands} are given the following values:

Si(Xg, 1) = [05|ve|Ne/N+]Xg,t» (52)
S.T.(Xg’ t) = [_lg(Ne“‘ N—)]xg,t- (53)

A set of similar equations can be also written for the negative ions.

The mobility of electrons is several orders of magnitude greater than the mobility of ior
Moreover, the drift of electrons and positive ions occurs in opposite directions. The
two facts must be taken into account to avoid the situation where the superelectr
as they drift to the anode, enter a cell completely void of supercations and/or supel
ions. If that happens, the gain/loss rate of the ion densities at the grid point cannot
returned to the computational particles, since they will be absent in the cell. Therefore
the electron head moves towards the anode, new superions with initial yajueﬂ‘and
1, = 0, have to be created. In the present simulation, superions are checked to exis
far as one cell ahead from the most advanced superelectron. In their absence, new st
ons are introduced to fill the void region with a density of 15 computational particles p
cell.

5.1.4. Boundary—particle interaction.Physical boundaries are located at the cathod
and at the anode, to which correspond the grid pokgtand x;go, respectively. These
physical boundaries may interact with the computational particles in three different forr
depending on the type of particles we are considering. Basically, the electrodes may bel
asabsorbing, repellingand/orinjectingboundaries.

Absorbing boundaries are the cathode for the positive ions and the anode for the neg:
ions and the electrons. This type of boundary is implemented by using two additio
grid points beyond the original grick_; = —1 andx;g; = 181. Computational particles
are not removed from the simulation until they cross these extended limits. Meanwh
the super-cations located between the grid pointsand xg will still contribute to the
positive ion density at the cathode and, correspondingly, the superanions and superelec
betweerx;gg andx;g; will contribute to the negative ion density and electron density at th
anode respectively. Since superparticles are absorbed progressively, there will not be su
jumps in charge density that may cause unwanted fluctuations in the particle density.
velocity of these computational particles is evaluated from the electric field at the midpoi
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X_1+1/2 andxigor1/2, Which is linearly extrapolated from the two nearest midpoints in th
grid.

Repelling boundaries are the cathode for the negative ions and the anode for the pos
ions. This kind of boundary—particle interaction corresponds to the boundary conditic
(42)—(43) and is implemented by excluding super-anions and super-cations from the
intervals o, X1) and(Xy79, X180], respectively. Since the drift direction of negative ions is
toward the anode, care must be taken to avoid a situation where the first grid cells bec
empty of superanions. This is accomplished by introducing new computational particle:
this type, with a density of 15 particles per cell, in the void region to the right of the gr
pointx; . Similarly to the process of particle creation in the bulk, these new computatior
particles are created wir/lng_z 0. At the anode, similar care must be taken with positive
ions and, when necessary, new supercations should be introduced in the void region t
left of the grid pointx;7g .

Finally, the cathode also behaves as an injecting boundary for electrons, as express
the boundary condition (44). Taking into account Egs. (45) and (46), this boundary condit
fixes the rate at which secondary electrons are being introduced into the system from
cathode, that igpe(0, t)|Ne(0, t). Therefore, this boundary condition is implemented as
gain/loss rate for the number density of electrons at the first grid point. The rate of variat
of ,J‘; in the interval k_1, x;) is obtained as

dje®
. = S0 HW([x0 = X5[) + Gt (xa W (|1 — x5

) (54)

wheres,(Xo, t) is the gain/loss rate associated with the boundary condition at the cathol

L% 1) = [ o/ (55)

|Ue|Ne/(H/Z)}

Xo '[,
ands;(xy, t) is the gain/loss rate due to the chemical reactions occurring in the first g
point in the bulk.

5.2. Numerical Results

In this section, the results of the PIC simulation will be analyzed and compared w
those obtained using a FCT method. The FCT algorithm implemented here is basic
identical to the one used by Morrow [21], that is, the Phoenical “low-phase error” Sha
algorithm of Boris and Book [2] complemented with Zalesak’s peak preserver[27]. The tir
integration in both simulations has been performed by a second-order Runge—Kutta me
with variable time step. The time step is adjusted to satisfy Mak Atmax = H/20max
wherevnmax is the maximum value of the velocity at the grid points. This is in essence tl
Courant—Friedicks—Lewis condition for the stability of the numerical scheme. Both in t
FCT and in the PIC simulation, the maximum size of the time step has been limited
0.75Atmax-

The PIC simulation starts at timte= 0 with the release of 400 seed electrons near th
cathode. These seed electrons are represented by 309 computational particules (s
electrons) distributed along the first 21 cells. The electron density profile correspond
to these computational particles is a narrow Gaussian distribution with peak density
1.52 x 10"*m~—3 whose center is at a distange= 55um apart from the cathode. The
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FIG.5. Electron density in the early stages of the Trichel pulse simuldtien1 ng. The PIC simulation has
been carried out in different forms, as described by the two characters in the upper-left label. First character
mass matrix formulation has been applied (T) or not applied (F) to the interpolation of the gain/loss rate. Sec
character: the proportionality with density of the gain/loss rate is exploited (T) or ignored (F).

simulation has been followed during the first 213 ns, since this interval is long enough
observe the four different phases of the Trichel pulse defined by Morrow.

Let us first discuss the effect of applying or not applying the mass matrix formulatic
and exploiting or ignoring the proportionality to density of some of the terms appeari
in the gain/loss rates. As before, a label of two characters will be used inside the plot:
discern among the different PIC simulations. The first character of the label refers to
application of the mass matrix formulation (T: true, F: false) while the second indicates
the simulation has taken advantage of the proportionality to density of some of the tel
of the gain/loss rates (T: true, F: false).

Figure 5 shows the electron densitytat 1 ns, after the PIC simulation has been run
for 241 temporal steps. At this early stage, the initial electron distribution has drifte
375 um towards the cathode and has already experienced some amplification. Com
ing the four different simulations, we observe that, as in the model test of the elect
avalanche, the mass matrix formulation has very little influence when the proportionality
the gain/loss rate to the mass density is used (FT and TT). In contrast, when this proport
ality is ignored, the mass matrix correction is necessary in order to obtain an accurate s
tion (TF).

Since electrons are drifting in a highly non-uniform decreasing electric field, the ele
tron distribution tends to collapse in to a delta function. Therefore, sooner or later, all 1
computational particles will be spread along a distance shorter than the width of a ¢
gle cell. At that moment, the initial Gaussian distribution will only be defined by two ©
three grid points, depending on whether the packet of particles is exactly bounded by
grid points or is placed inside a cell. This configuration can be observed in Fig. 6a, cor
sponding t¢ = 10 ns. The agreement and the differences among the four PIC simulatic
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FIG. 6. Electron density in the early stages of the Trichel pulse simulatiea 10 n3. (a) Detailed view
of the electron avalanche head. (b) Detailed view of the secondary electrons released at the cathode. Th
simulation has been carried out in different forms, as described by the two characters in the upper-lef
bel. First character: the mass matrix formulation has been applied (T) or not applied (F) to the interpola
of the gain/loss rate. Second character: the proportionality of the gain/loss rate to density is exploited (T
ignored (F).

are practically unchanged with respect to the earlier timel ns. However, a new as-

pect of the simulation now appears: the use of the mass matrix formulation when

gain/loss rate has been interpolated without exploiting its proportionality with density (T
has introduced a spurious fluctuation behind the electron pulse. At later times, this fl
tuation may appear either behind, ahead of, or both behind and ahead of the elec
pulse.
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FIG. 7. Electron density distribution in the Trichel pulsetat 43 ns. The PIC simulation has been carried
out in different forms, as described by the two characters in the upper-left label. First character: the mass m
formulation has been applied (T) or not applied (F) to the interpolation of the gain/loss rate. Second charactet
proportionality with density of the gain/loss rate is exploited (T) or ignored (F).

At this stage of the simulation, secondary electrons at the cathode are mainly relee
by the impact of the photons generated by ionization in the bulk. The nhumber of impa
is proportional to the rate of ionization in the bulk and therefore depends on the elec
field strength. The existence of a fluctuation behind the electron pulse, where the pari
density becomes “negative” and the electric field is stronger, will contribute to a noticea
decrease in the number of secondary electrons released by the cathode. This effec
be appreciated in Fig. 6b, where a detailed view of the density of secondary electron
t = 10 ns is presented. The presence of these spurious oscillation deteriorates the
simulation, affecting it irreversibly at all later times. As an example, Fig. 7 shows tt
electron density distribution at the instant 43 ns. The results of the PIC simulations
where the dependence of the gain/loss rate on the density have been exploited (FT anc
are practically coincident. In contrast, the results of the other PIC simulations show a cl
disagreement in the peak value of the electron density, which the application of the m
matrix formulation is unable to suppress.

Finally, Fig. 8 show the electric field distribution and the densities of electrons, po:
tive ions and negative ions as the Trichel pulse develops. In these figures, only one of
four PIC simulations is presented: the one where the proportionality of the gain/loss rate v
the mass density is used and the mass matrix formulation is not applied (FT). This PIC sil
lation is practically coincident at all times with the one where the mass matrix formulation
used (TT). However, some discrepancies have always been observed with the other twa
simulations.

The results of PIC simulation (markers) show an excellent agreement with the p
dictions of the FCT simulation (solid line). Some minor fluctuations can be notice
in the electric field distribution (Fig. 8c) and in the electron density (Fig. 8d). Thes
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FIG. 8. Time evolution of the Trichel pulse. Markers: PIC simulation. Solid line: FCT simulation. (a) Electri
field distribution for the complete gap. (b) Detailed view of the electric field in the vicinity of the cathodé
(c) Detailed view of the low-field region. (d) Electron density distribution in the vicinity of the cathode
(e) Positive ion density distribution in the vicinity of the cathode. (f) Negative ion density distribution in th
vicinity of the cathode.

fluctuations occur at the location where the plasma regions begin. At that point, suy
electrons injected from the cathode tend to accumulate, due to the sharp gradient or
electric field, and are slowly evacuated through the plasma region. However, this sr
fluctuation is very localized and does not tend to amplify in time. On the other hand,
positive ion density (Fig. 8e) obtained by means of the FCT simulation shows the ct
acteristic staircase formation of this numerical technique [15], which is absent in the F
simulation.
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FIG. 8—Continued
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6. CONCLUSIONS

The application of a PIC fluid model to the numerical simulation of transient gas di
charges has shown the ability of the method to deal satisfactorily with fast time variatic
and sharp gradients.

Two different tests are performed. First, the numerical scheme is checked with the pr
lem of an idealized electron avalanche in a non-attaching gas. This problem possess
analytical solution where the electron density grows exponentially in time while propag
ing. Then, the propagation of a Trichel pulse in oxygen is simulated. This is a particula
difficult test since it combines the presence of very sharp gradients of the particle dens
and the existence of plasma region where the electric field almost vanishes. The resul
the PIC simulation are compared with those obtained from the application of a explicit F
algorithm. The agreement between both methods is remarkable.

These tests are used to investigate the effects of the application of the mass m
formulation to the model, and to analyze the optimum interpolation of the gain/loss r:
of mass (or particle) density from the grid to the computational particles. In particular, t
analysis shows that more accurate results are always obtained when the proportionali
the gain/loss rate to mass density is exploited. Therefore, the use of a unique interpolatio
alltypes of gain/loss rates, where this proportionality is not used, is completely discourag
Analogously, the application of the mass matrix formulation may have severe side effe
in PIC simulations, since spurious fluctuations may originate in those regions where
mass density exhibits sharps gradients. Since the presence of sharp gradients is a cor
feature in most of the transient discharges, the use of the mass matrix simulation is
recommended upon the verification that the numerical solution without mass matrix la
discontinuities extending over a few grid points. However, in numerical tests, the applicat
of the mass matrix formulation was unnecessary when the proportionality with the m
density of the gain/loss rates was taken into account, since in this case the correct
introduced by using the mass matrix formulation were small.
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The next step of this study will be to extend this numerical method to the case ¢
multidimensional geometry since, from the conceptual point of view, this extension pos
no additional complications, contrary to 2D and 3D flux-corrected-transport schemes.

APPENDIX: STABILITY ANALYSIS

Momentum-conserving schemes interpolate the values of both the mass density anc
electric field at the grid points to the computational particles. In contrast, energy conserv
schemes interpolate the grid-defined values of the mass density and the electric field valu
the cell boundaries into the computational particles. Moreover, the order of the interpolat
for the electric field must be one order lower than the one used for the mass density.

The instability of the momentum-conserving scheme observed in PIC simulation
the Trichel pulse can be understood as a particular case of the well-known “finite-g
instability” or “ringing instability,” as it is termed in the fields of plasma kinetic simulation
[5,16, 18] and fluid PIC simulation [3], respectively. This instability is caused by the spuriol
coupling of the Fourier modes resolved by the grid and their “alias.” The stability analy:
that we present below follows a line of reasoning analogous to those given in [3, 5, 14]

Let us consider a simplified system consisting of an infinitely long gas discharge chan
where the electrons are the only mobile carriers. These electrons drift across a uniform b
ground of static positive ions with densilyy because of the electric field. Since the origin
of the instability is linked to the transport of charge and not to its generation, the evoluti
of the electron density will be studied by using the homogeneous continuity equation

oN d

WJra—X(Nv)_O, (56)
wherex is the axis of the discharg® (x) is the electron density, andx) = —bE(X) is
the drift velocity of electrons with constant mobiliy Similarly to the Trichel pulse simu-
lation, the total electric fieldE (x), is obtained as the superposition of a Laplacian electri
field of constant valuekz, and the space charge field due to the discharge chdafig),
The space charge electric field may be found using the method of disks. By proceedin
this way, this electric field is obtained as the convolution of a certain funciior,— x’),
with the charge density. This function is analogous to Green’s function for the electric
potential, and is numerically implemented as an influence-matrix operator [22].

Equation (56) possesses a trivial equilibrium solution where the electron density is ¢
stant and equal to the positive ion densNl, and the total electric field is the Laplacian
electric field,Eo. Let us now assume that this equilibrium solution is subjected to a sm:
perturbation of the electron density,, and of the electric fieldg’. The evolution of the
perturbations will be described by

IN’ oON’ v’
FNo Y =, (57)

wherevy = —bEp. By aFourier decomposition of the perturbation, Eq. (57) can be written ¢
(—w + vok) N}, + kNody = 0, (58)

whereNj, and, are the Fourier components of the perturbations associated with the mc
with wavenumbek. In Eq. (58), a temporal dependence of the faTit" is assumed for
the Fourier components.
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The Fourier components of the velocity and electric field perturbations are related a:
B = —bE} = bgeN}Fx,

whereq is the absolute value of the electron charge. Taking into accounkEtiga real
odd function of its argument, the Fourier componEgis purely imaginaryFx = i J(Fy).
Moreover, sincdF (x — x’)| is a decreasing function ¢k — x’'| and F(x — x") > O for
x — X' > 0, it will be I(Fy) < 0 fork > 0 and3(Fy) > 0 fork < 0. Therefore, Eq. (58)
can be rewritten as

w = vok + ibgeNoI(F )k (59)

and all modes will be damped down in the continuous system, Sitege < 0.

When the effect of the discrete grid spacihy,is taken into account [3], the filtered and
aliased version of,” must be introduced in (58), resulting in the momentum-conservin
scheme

j=00
(—o + oK) N + kbaeNoWF P >~ Ni, i Wiy i, =0, (60)

j=—o0

wherekg = 27/H, Wi is the Fourier component of the assignment function shapel,fé‘nd
is the discretely sampled version Bf Using the periodicity of7' [14], the dispersion
relation may be written as

= kW2
=0, (61)

1 — ibgeNoX (FY) pry—_—
- J

j=—00
wherek; = k + jkq. We always assume that the resolution is fine enough to achieve a gc
sampling oflf[(n so that the properties ¥ (k) are equally valid for its discretely sampled
version. In other wordsky is band-limited to the principal zonelky < k < 3kg.
In contrast, the dispersion relation for the energy-conserving interpolation scheme
found to be [14]

=0, (62)

whereF¢is the discretely sampled versionlfthat now relates charge density at the node:
of the grid to electric field at the cell boundaries.

A direct comparison between the dispersion relations of the energy-conserving
momentum-conserving schemes reveals a clear difference in the behavior of the ali
Let us consider a simplified case where only a single alias is retained. Equations (61)
(62) can then be written, respectively, as

NE (63)

w = vokj + ibquoSin KW . (64)

The dispersion relation for the momentum-conserving scheme is lindgr itherefore,
the aliases withf > 1 andj < —1 will have J(w) > 0, provided that—%kg <k <0Oand
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O0<k< %kg, respectively. This result shows that the moklegar the limit of the principal
zone are likely to destabilize the momentum-conserving scheme, since the filtering of th
modes inside the principal zone and the filtering of the first positive or negative alias
comparable [14]. In contrast, for the energy-conserving sch&mg, < 0 for all the aliases,
sincew is quadratic irk; and%(lfﬁ)/sin(%kH) < 0, and all modes are damped down.
The zeros of the dispersion relations (62) and (61) have been obtained numerically
applying a Delves—Lyness algorithm [10, 19]. As expected, the inclusion of an alias beyc
k + kg andk — ky gives rise to very small differences i w). For each valuk, three
values ofw were found. In Fig. 9, the most unstable of these three solutions is shown 1

(a)
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FIG. 9. Dimensionless growth rate of the perturbations corresponding to the most unstable mode for
momentum-conserving and (b) energy-conserving schemes of interpolation. The growth rate scale is defin
w* = kgv*, wherev* = bE* andE* = q|3(Fi)|No.
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NIN,

x/H

FIG. 10. Electron density distribution (upper graph) and number of computational particlegX@pi.cell
(lower graph) at = 20t,, as predicted by the momentum-conserving PIC simulation.

both schemes. Clearly, the momentum-conserving scheme is unstable, particularly for |
values ofk, due to interaction with the first unstalket kq aliases.

These results are in fair agreement with the instability arising in the momentul
conserving PIC simulation of Eq. (56). In the PIC simulation, the cylindrical dischart
channel connects two infinite parallel plates separated by a distanehich is divided
in 100 computational cells. Electrons are continuously being injected at the cathode
maintain the constant initial electron density. The upper part of Fig. 10 shows the elect
density distribution at = 20tp, with tg = L /bEy. The instability observed in the particle
density gives rise to the clustering of electrons in packets separated by a distarfid of 1
approximately. This spacing is smaller, but very closekly &hich is the minimum wave-
length that can be sampled by the grid. This finding is consistent with our interpretation t
the instability of the momentum-conserving PIC simulation is triggered by the first alias
k £ Kkg. The clustering can be observed in the lower part of Fig. 10, where the histograrr
particle position is shown with a resolution Bif/10.
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